解答
∫(3x5−8)96x4dx
解答
6(5019683x50−552488x45+5629856x40−54478976x35+520901888x30−25334430208x25+5148635648x20−5226492416x15+5226492416x10−5134217728x5)+C
求解步骤
∫(3x5−8)9⋅6x4dx
提出常数: ∫a⋅f(x)dx=a⋅∫f(x)dx=6⋅∫(3x5−8)9x4dx
乘开 (3x5−8)9x4:19683x49−472392x44+5038848x39−31352832x34+125411328x29−334430208x24+594542592x19−679477248x14+452984832x9−134217728x4
=6⋅∫19683x49−472392x44+5038848x39−31352832x34+125411328x29−334430208x24+594542592x19−679477248x14+452984832x9−134217728x4dx
使用积分加法定则: ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx=6(∫19683x49dx−∫472392x44dx+∫5038848x39dx−∫31352832x34dx+∫125411328x29dx−∫334430208x24dx+∫594542592x19dx−∫679477248x14dx+∫452984832x9dx−∫134217728x4dx)
∫19683x49dx=5019683x50
∫472392x44dx=552488x45
∫5038848x39dx=5629856x40
∫31352832x34dx=54478976x35
∫125411328x29dx=520901888x30
∫334430208x24dx=25334430208x25
∫594542592x19dx=5148635648x20
∫679477248x14dx=5226492416x15
∫452984832x9dx=5226492416x10
∫134217728x4dx=5134217728x5
=6(5019683x50−552488x45+5629856x40−54478976x35+520901888x30−25334430208x25+5148635648x20−5226492416x15+5226492416x10−5134217728x5)
解答补常数=6(5019683x50−552488x45+5629856x40−54478976x35+520901888x30−25334430208x25+5148635648x20−5226492416x15+5226492416x10−5134217728x5)+C