Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Calculus >

d/(dt)((3e^{3αt}xα)/4)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

dtd​(43e3αtxα​)

Solution

49e3αtα2x​
Solution steps
dtd​(43e3αtxα​)
Treat α,xas constants
Take the constant out: (a⋅f)′=a⋅f′=43xα​dtd​(e3αt)
Apply the chain rule:e3αtdtd​(3αt)
=e3αtdtd​(3αt)
dtd​(3αt)=3α
=43xα​e3αt⋅3α
Simplify 43xα​e3αt⋅3α:49e3αtα2x​
=49e3αtα2x​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

integral of (x+5)7integral of 3/(1-y)area y=-x^2+1,(-1,1)derivative of x^3y^2limit as n approaches infinity of n/n

Frequently Asked Questions (FAQ)

  • What is the d/(dt)((3e^{3αt}xα)/4) ?

    The d/(dt)((3e^{3αt}xα)/4) is (9e^{3αt}α^2x)/4
  • What is the first d/(dt)((3e^{3αt}xα)/4) ?

    The first d/(dt)((3e^{3αt}xα)/4) is (9e^{3αt}α^2x)/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024