Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Calculus >

integral from 0 to 1 of e^{-(1+j^2pin)t}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

∫01​e−(1+j2πn)tdt

Solution

−1−πj2ne−1−πj2n−1​
Solution steps
∫01​e−(1+j2πn)tdt
Apply u-substitution
=∫0−1−πj2n​−1−πj2neu​du
Take the constant out: ∫a⋅f(x)dx=a⋅∫f(x)dx=−1−πj2n1​⋅∫0−1−πj2n​eudu
Use the common integral: ∫eudu=eu=−1−πj2n1​[eu]0−1−πj2n​
Simplify −1−πj2n1​[eu]0−1−πj2n​:−1−πj2n[eu]0−1−πj2n​​
=−1−πj2n[eu]0−1−πj2n​​
Compute the boundaries:e−1−πj2n−1
=−1−πj2ne−1−πj2n−1​

Popular Examples

integral of 2/(sqrt(3x-7))(\partial)/(\partial x)(((1+y))/((1+x)))(d^2)/(dx^2)(sqrt(x)e^{7x})integral of (5x^2)/(sqrt(x^2-4))sum from n=1 to infinity of 0.45^n

Frequently Asked Questions (FAQ)

  • What is the integral from 0 to 1 of e^{-(1+j^2pin)t} ?

    The integral from 0 to 1 of e^{-(1+j^2pin)t} is (e^{-1-pij^2n}-1)/(-1-pij^2n)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024