Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Calculus >

integral of te^{-i2pift}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

∫te−i2πftdt

Solution

4π2f21​(cos(2πft)+2πftsin(2πft))+i4π2f21​(−sin(2πft)+2πftcos(2πft))+C
Solution steps
∫te−i2πftdt
Apply u-substitution
=∫−4π2f2euu​du
Take the constant out: ∫a⋅f(x)dx=a⋅∫f(x)dx=−4π2f21​⋅∫euudu
Apply Integration By Parts
=−4π2f21​(euu−∫eudu)
∫eudu=eu
=−4π2f21​(euu−eu)
Substitute back u=−2fitπ=−4π2f21​(e−2fitπ(−2fitπ)−e−2fitπ)
Simplify −4π2f21​(e−2fitπ(−2fitπ)−e−2fitπ):4π2f21​(cos(2πft)+2πftsin(2πft))+i4π2f21​(−sin(2πft)+2πftcos(2πft))
=4π2f21​(cos(2πft)+2πftsin(2πft))+i4π2f21​(−sin(2πft)+2πftcos(2πft))
Add a constant to the solution=4π2f21​(cos(2πft)+2πftsin(2πft))+i4π2f21​(−sin(2πft)+2πftcos(2πft))+C

Popular Examples

derivative of f(x)=(3x-4)(y^2+1)dx=y(sec^2(x))dy(\partial)/(\partial x)(x-3y^2+4x^2y^3)y^{''}-4y^'=6tinverse oflaplace (7s^3-9s+1)/(3s^5)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024