解答
f(x)=sin(2x)−sin(x)
解答
Period:2π
Domain:−∞<x<∞
Range:sin(2arccos(81−33))−1−3217−33≤f(x)≤sin(2(−arccos(81−33)+2π))+1−3217−33
X截距:(2πn,0),(π+2πn,0),(3π+2πn,0),(35π+2πn,0),Y截距:(0,0)
Asymptotes:无
ExtremePoints:极大值arccos(81+33)+2πn,sin(2arccos(81+33))−1−3217+33,极小值arccos(81−33)+2πn,sin(2arccos(81−33))−1−3217−33,极大值−arccos(81−33)+2π+2πn,sin(2(−arccos(81−33)+2π))+1−3217−33,极小值2π−arccos(81+33)+2πn,sin(2(2π−arccos(81+33)))+1−3217+33
+1
间隔符号
Domain:(−∞,∞)
Range:sin(2arccos(81−33))−1−3217−33,sin(2(−arccos(81−33)+2π))+1−3217−33
求解步骤
sin(2x)−sin(x)的周期:2π
sin(2x)−sin(x)的定义域 :−∞<x<∞
sin(2x)−sin(x)的值域:sin(2arccos(81−33))−1−3217−33≤f(x)≤sin(2(−arccos(81−33)+2π))+1−3217−33
sin(2x)−sin(x)的轴截距点:X 截距:(2πn,0),(π+2πn,0),(3π+2πn,0),(35π+2πn,0),Y 截距:(0,0)
sin(2x)−sin(x)的渐近线:无
sin(2x)−sin(x)的极值点:极大值arccos(81+33)+2πn,sin(2arccos(81+33))−1−3217+33,极小值arccos(81−33)+2πn,sin(2arccos(81−33))−1−3217−33,极大值−arccos(81−33)+2π+2πn,sin(2(−arccos(81−33)+2π))+1−3217−33,极小值2π−arccos(81+33)+2πn,sin(2(2π−arccos(81+33)))+1−3217+33