Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

sin(x/2)+cos(x)-1=0

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

sin(2x​)+cos(x)−1=0

Решение

x=4πn,x=2π+4πn,x=3π​+4πn,x=35π​+4πn
+1
Градусы
x=0∘+720∘n,x=360∘+720∘n,x=60∘+720∘n,x=300∘+720∘n
Шаги решения
sin(2x​)+cos(x)−1=0
Допустим: u=2x​sin(u)+cos(2u)−1=0
Перепишите используя тригонометрические тождества
−1+cos(2u)+sin(u)
Используйте тождество двойного угла: cos(2x)=1−2sin2(x)=−1+1−2sin2(u)+sin(u)
После упрощения получаем=sin(u)−2sin2(u)
sin(u)−2sin2(u)=0
Решитe подстановкой
sin(u)−2sin2(u)=0
Допустим: sin(u)=uu−2u2=0
u−2u2=0:u=0,u=21​
u−2u2=0
Запишите в стандартной форме ax2+bx+c=0−2u2+u=0
Решите с помощью квадратичной формулы
−2u2+u=0
Формула квадратного уравнения:
Для a=−2,b=1,c=0u1,2​=2(−2)−1±12−4(−2)⋅0​​
u1,2​=2(−2)−1±12−4(−2)⋅0​​
12−4(−2)⋅0​=1
12−4(−2)⋅0​
Примените правило 1a=112=1=1−4(−2)⋅0​
Примените правило −(−a)=a=1+4⋅2⋅0​
Примените правило 0⋅a=0=1+0​
Добавьте числа: 1+0=1=1​
Примените правило 1​=1=1
u1,2​=2(−2)−1±1​
Разделите решенияu1​=2(−2)−1+1​,u2​=2(−2)−1−1​
u=2(−2)−1+1​:0
2(−2)−1+1​
Уберите скобки: (−a)=−a=−2⋅2−1+1​
Прибавьте/Вычтите числа: −1+1=0=−2⋅20​
Перемножьте числа: 2⋅2=4=−40​
Примените правило дробей: −ba​=−ba​=−40​
Примените правило a0​=0,a=0=−0
=0
u=2(−2)−1−1​:21​
2(−2)−1−1​
Уберите скобки: (−a)=−a=−2⋅2−1−1​
Вычтите числа: −1−1=−2=−2⋅2−2​
Перемножьте числа: 2⋅2=4=−4−2​
Примените правило дробей: −b−a​=ba​=42​
Отмените общий множитель: 2=21​
Решением квадратного уравнения являются:u=0,u=21​
Делаем обратную замену u=sin(u)sin(u)=0,sin(u)=21​
sin(u)=0,sin(u)=21​
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
Общие решения для sin(u)=0
sin(x)таблица периодичности с циклом 2πn:
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Решить u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
sin(u)=21​:u=6π​+2πn,u=65π​+2πn
sin(u)=21​
Общие решения для sin(u)=21​
sin(x)таблица периодичности с циклом 2πn:
u=6π​+2πn,u=65π​+2πn
u=6π​+2πn,u=65π​+2πn
Объедините все решенияu=2πn,u=π+2πn,u=6π​+2πn,u=65π​+2πn
Делаем обратную замену u=2x​
2x​=2πn:x=4πn
2x​=2πn
Умножьте обе части на 2
2x​=2πn
Умножьте обе части на 222x​=2⋅2πn
После упрощения получаемx=4πn
x=4πn
2x​=π+2πn:x=2π+4πn
2x​=π+2πn
Умножьте обе части на 2
2x​=π+2πn
Умножьте обе части на 222x​=2π+2⋅2πn
После упрощения получаемx=2π+4πn
x=2π+4πn
2x​=6π​+2πn:x=3π​+4πn
2x​=6π​+2πn
Умножьте обе части на 2
2x​=6π​+2πn
Умножьте обе части на 222x​=2⋅6π​+2⋅2πn
После упрощения получаем
22x​=2⋅6π​+2⋅2πn
Упростите 22x​:x
22x​
Разделите числа: 22​=1=x
Упростите 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Умножьте дроби: a⋅cb​=ca⋅b​=6π2​
Отмените общий множитель: 2=3π​
2⋅2πn=4πn
2⋅2πn
Перемножьте числа: 2⋅2=4=4πn
=3π​+4πn
x=3π​+4πn
x=3π​+4πn
x=3π​+4πn
2x​=65π​+2πn:x=35π​+4πn
2x​=65π​+2πn
Умножьте обе части на 2
2x​=65π​+2πn
Умножьте обе части на 222x​=2⋅65π​+2⋅2πn
После упрощения получаем
22x​=2⋅65π​+2⋅2πn
Упростите 22x​:x
22x​
Разделите числа: 22​=1=x
Упростите 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Умножьте дроби: a⋅cb​=ca⋅b​=65π2​
Перемножьте числа: 5⋅2=10=610π​
Отмените общий множитель: 2=35π​
2⋅2πn=4πn
2⋅2πn
Перемножьте числа: 2⋅2=4=4πn
=35π​+4πn
x=35π​+4πn
x=35π​+4πn
x=35π​+4πn
x=4πn,x=2π+4πn,x=3π​+4πn,x=35π​+4πn

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

sqrt(3)sin(x)sec(x)=2sin(x)solvefor y,x=sin(y)2sin(x/2)+sqrt(3)=02cos^2(x)+3sin(x)=0tan(3x)-1=0
Инструменты для обученияИИ Решатель ЗадачРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для ChromeSymbolab Math Solver API
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьУсловияПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024