Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ/2)-sin(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2θ​)−sin(θ)=0

Solution

θ=2π​+2πn,θ=23π​+2πn,θ=4πn,θ=2π+4πn
+1
Degrees
θ=90∘+360∘n,θ=270∘+360∘n,θ=0∘+720∘n,θ=360∘+720∘n
Solution steps
tan(2θ​)−sin(θ)=0
Express with sin, cos
−sin(θ)+tan(2θ​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(θ)+cos(2θ​)sin(2θ​)​
Simplify −sin(θ)+cos(2θ​)sin(2θ​)​:cos(2θ​)−sin(θ)cos(2θ​)+sin(2θ​)​
−sin(θ)+cos(2θ​)sin(2θ​)​
Convert element to fraction: sin(θ)=cos(2θ​)sin(θ)cos(2θ​)​=−cos(2θ​)sin(θ)cos(2θ​)​+cos(2θ​)sin(2θ​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2θ​)−sin(θ)cos(2θ​)+sin(2θ​)​
=cos(2θ​)−sin(θ)cos(2θ​)+sin(2θ​)​
cos(2θ​)sin(2θ​)−cos(2θ​)sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0sin(2θ​)−cos(2θ​)sin(θ)=0
Rewrite using trig identities
sin(2θ​)−cos(2θ​)sin(θ)
Use the Product to Sum identity: sin(s)cos(t)=21​(sin(s+t)+sin(s−t))=sin(2θ​)−21​(sin(θ+2θ​)+sin(θ−2θ​))
Simplify sin(2θ​)−21​(sin(θ+2θ​)+sin(θ−2θ​)):2−sin(23θ​)+sin(2θ​)​
sin(2θ​)−21​(sin(θ+2θ​)+sin(θ−2θ​))
21​(sin(θ+2θ​)+sin(θ−2θ​))=2sin(23θ​)+sin(2θ​)​
21​(sin(θ+2θ​)+sin(θ−2θ​))
Multiply fractions: a⋅cb​=ca⋅b​=21⋅(sin(θ+2θ​)+sin(θ−2θ​))​
1⋅(sin(θ+2θ​)+sin(θ−2θ​))=sin(θ+2θ​)+sin(θ−2θ​)
1⋅(sin(θ+2θ​)+sin(θ−2θ​))
Multiply: 1⋅(sin(θ+2θ​)+sin(θ−2θ​))=(sin(θ+2θ​)+sin(θ−2θ​))=(sin(θ+2θ​)+sin(θ−2θ​))
Remove parentheses: (a)=a=sin(θ+2θ​)+sin(θ−2θ​)
=2sin(θ+2θ​)+sin(θ−2θ​)​
Join θ+2θ​:23θ​
θ+2θ​
Convert element to fraction: θ=2θ2​=2θ​+2θ⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2θ+θ⋅2​
Add similar elements: θ+2θ=3θ=23θ​
=2sin(23θ​)+sin(θ−2θ​)​
Join θ−2θ​:2θ​
θ−2θ​
Convert element to fraction: θ=2θ2​=−2θ​+2θ⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−θ+θ⋅2​
Add similar elements: −θ+2θ=θ=2θ​
=2sin(23θ​)+sin(2θ​)​
=sin(2θ​)−2sin(23θ​)+sin(2θ​)​
Convert element to fraction: sin(2θ​)=2sin(2θ​)2​=−2sin(23θ​)+sin(2θ​)​+2sin(2θ​)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−(sin(23θ​)+sin(2θ​))+sin(2θ​)⋅2​
Expand −(sin(23θ​)+sin(2θ​))+sin(2θ​)⋅2:−sin(23θ​)+sin(2θ​)
−(sin(23θ​)+sin(2θ​))+sin(2θ​)⋅2
=−(sin(23θ​)+sin(2θ​))+2sin(2θ​)
−(sin(23θ​)+sin(2θ​)):−sin(23θ​)−sin(2θ​)
−(sin(23θ​)+sin(2θ​))
Distribute parentheses=−(sin(23θ​))−(sin(2θ​))
Apply minus-plus rules+(−a)=−a=−sin(23θ​)−sin(2θ​)
=−sin(23θ​)−sin(2θ​)+sin(2θ​)⋅2
Add similar elements: −sin(2θ​)+2sin(2θ​)=sin(2θ​)=−sin(23θ​)+sin(2θ​)
=2−sin(23θ​)+sin(2θ​)​
=2−sin(23θ​)+sin(2θ​)​
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=22sin(22θ​−23θ​​)cos(22θ​+23θ​​)​
Simplify 22sin(22θ​−23θ​​)cos(22θ​+23θ​​)​:−cos(θ)sin(2θ​)
22sin(22θ​−23θ​​)cos(22θ​+23θ​​)​
Combine the fractions 2θ​+23θ​:2θ
Apply rule ca​±cb​=ca±b​=2θ+3θ​
Add similar elements: θ+3θ=4θ=24θ​
Divide the numbers: 24​=2=2θ
=22sin(22θ​−23θ​​)cos(22θ​)​
Combine the fractions 2θ​−23θ​:−θ
Apply rule ca​±cb​=ca±b​=2θ−3θ​
Add similar elements: θ−3θ=−2θ=2−2θ​
Apply the fraction rule: b−a​=−ba​=−22θ​
Divide the numbers: 22​=1=−θ
=22sin(2−θ​)cos(22θ​)​
Apply the fraction rule: b−a​=−ba​=22sin(−2θ​)cos(22θ​)​
Divide the numbers: 22​=1=sin(−2θ​)cos(22θ​)
Use the negative angle identity: sin(−x)=−sin(x)=cos(22θ​)(−sin(2θ​))
Remove parentheses: (−a)=−a=−cos(22θ​)sin(2θ​)
Divide the numbers: 22​=1=−cos(θ)sin(2θ​)
=−cos(θ)sin(2θ​)
−cos(θ)sin(2θ​)=0
Solving each part separatelycos(θ)=0orsin(2θ​)=0
cos(θ)=0:θ=2π​+2πn,θ=23π​+2πn
cos(θ)=0
General solutions for cos(θ)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=2π​+2πn,θ=23π​+2πn
θ=2π​+2πn,θ=23π​+2πn
sin(2θ​)=0:θ=4πn,θ=2π+4πn
sin(2θ​)=0
General solutions for sin(2θ​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ​=0+2πn,2θ​=π+2πn
2θ​=0+2πn,2θ​=π+2πn
Solve 2θ​=0+2πn:θ=4πn
2θ​=0+2πn
0+2πn=2πn2θ​=2πn
Multiply both sides by 2
2θ​=2πn
Multiply both sides by 222θ​=2⋅2πn
Simplifyθ=4πn
θ=4πn
Solve 2θ​=π+2πn:θ=2π+4πn
2θ​=π+2πn
Multiply both sides by 2
2θ​=π+2πn
Multiply both sides by 222θ​=2π+2⋅2πn
Simplifyθ=2π+4πn
θ=2π+4πn
θ=4πn,θ=2π+4πn
Combine all the solutionsθ=2π​+2πn,θ=23π​+2πn,θ=4πn,θ=2π+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-5cos(x)=-2sin^2(x)+4cos(θ)cos(2θ)+sin(θ)sin(2θ)=(sqrt(2))/2sec^2(x)-2tan(x)=4cos(4x)=cos(2x)sin(4x)+sin(2x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(θ/2)-sin(θ)=0 ?

    The general solution for tan(θ/2)-sin(θ)=0 is θ= pi/2+2pin,θ=(3pi)/2+2pin,θ=4pin,θ=2pi+4pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024