Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc(3θ)=6sin(3θ),0<θ<2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(3θ)=6sin(3θ),0<θ<2π

Solution

θ=30.42053…​,θ=3π−0.42053…​,θ=30.42053…+2π​,θ=33π−0.42053…​,θ=30.42053…+4π​,θ=35π−0.42053…​,θ=3π+0.42053…​,θ=3−0.42053…+2π​,θ=33π+0.42053…​,θ=3−0.42053…+4π​,θ=35π+0.42053…​,θ=3−0.42053…+6π​
+1
Degrees
θ=8.03161…∘,θ=51.96838…∘,θ=128.03161…∘,θ=171.96838…∘,θ=248.03161…∘,θ=291.96838…∘,θ=68.03161…∘,θ=111.96838…∘,θ=188.03161…∘,θ=231.96838…∘,θ=308.03161…∘,θ=351.96838…∘
Solution steps
csc(3θ)=6sin(3θ),0<θ<2π
Subtract 6sin(3θ) from both sidescsc(3θ)−6sin(3θ)=0
Rewrite using trig identities
csc(3θ)−6sin(3θ)
Use the basic trigonometric identity: sin(x)=csc(x)1​=csc(3θ)−6⋅csc(3θ)1​
6⋅csc(3θ)1​=csc(3θ)6​
6⋅csc(3θ)1​
Multiply fractions: a⋅cb​=ca⋅b​=csc(3θ)1⋅6​
Multiply the numbers: 1⋅6=6=csc(3θ)6​
=csc(3θ)−csc(3θ)6​
csc(3θ)−csc(3θ)6​=0
Solve by substitution
csc(3θ)−csc(3θ)6​=0
Let: csc(3θ)=uu−u6​=0
u−u6​=0:u=6​,u=−6​
u−u6​=0
Multiply both sides by u
u−u6​=0
Multiply both sides by uuu−u6​u=0⋅u
Simplify
uu−u6​u=0⋅u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u6​u:−6
−u6​u
Multiply fractions: a⋅cb​=ca⋅b​=−u6u​
Cancel the common factor: u=−6
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u2−6=0
u2−6=0
u2−6=0
Solve u2−6=0:u=6​,u=−6​
u2−6=0
Move 6to the right side
u2−6=0
Add 6 to both sidesu2−6+6=0+6
Simplifyu2=6
u2=6
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=6​,u=−6​
u=6​,u=−6​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u6​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=6​,u=−6​
Substitute back u=csc(3θ)csc(3θ)=6​,csc(3θ)=−6​
csc(3θ)=6​,csc(3θ)=−6​
csc(3θ)=6​,0<θ<2π:θ=3arccsc(6​)​,θ=3π−arccsc(6​)​,θ=3arccsc(6​)+2π​,θ=33π−arccsc(6​)​,θ=3arccsc(6​)+4π​,θ=35π−arccsc(6​)​
csc(3θ)=6​,0<θ<2π
Apply trig inverse properties
csc(3θ)=6​
General solutions for csc(3θ)=6​csc(x)=a⇒x=arccsc(a)+2πn,x=π−arccsc(a)+2πn3θ=arccsc(6​)+2πn,3θ=π−arccsc(6​)+2πn
3θ=arccsc(6​)+2πn,3θ=π−arccsc(6​)+2πn
Solve 3θ=arccsc(6​)+2πn:θ=3arccsc(6​)​+32πn​
3θ=arccsc(6​)+2πn
Divide both sides by 3
3θ=arccsc(6​)+2πn
Divide both sides by 333θ​=3arccsc(6​)​+32πn​
Simplifyθ=3arccsc(6​)​+32πn​
θ=3arccsc(6​)​+32πn​
Solve 3θ=π−arccsc(6​)+2πn:θ=3π​−3arccsc(6​)​+32πn​
3θ=π−arccsc(6​)+2πn
Divide both sides by 3
3θ=π−arccsc(6​)+2πn
Divide both sides by 333θ​=3π​−3arccsc(6​)​+32πn​
Simplifyθ=3π​−3arccsc(6​)​+32πn​
θ=3π​−3arccsc(6​)​+32πn​
θ=3arccsc(6​)​+32πn​,θ=3π​−3arccsc(6​)​+32πn​
Solutions for the range 0<θ<2πθ=3arccsc(6​)​,θ=3π−arccsc(6​)​,θ=3arccsc(6​)+2π​,θ=33π−arccsc(6​)​,θ=3arccsc(6​)+4π​,θ=35π−arccsc(6​)​
csc(3θ)=−6​,0<θ<2π:θ=3π+arccsc(6​)​,θ=3−arccsc(6​)+2π​,θ=33π+arccsc(6​)​,θ=3−arccsc(6​)+4π​,θ=35π+arccsc(6​)​,θ=3−arccsc(6​)+6π​
csc(3θ)=−6​,0<θ<2π
Apply trig inverse properties
csc(3θ)=−6​
General solutions for csc(3θ)=−6​csc(x)=−a⇒x=arccsc(−a)+2πn,x=π+arccsc(a)+2πn3θ=arccsc(−6​)+2πn,3θ=π+arccsc(6​)+2πn
3θ=arccsc(−6​)+2πn,3θ=π+arccsc(6​)+2πn
Solve 3θ=arccsc(−6​)+2πn:θ=−3arccsc(6​)​+32πn​
3θ=arccsc(−6​)+2πn
Simplify arccsc(−6​)+2πn:−arccsc(6​)+2πn
arccsc(−6​)+2πn
Use the following property: arccsc(−x)=−arccsc(x)arccsc(−6​)=−arccsc(6​)=−arccsc(6​)+2πn
3θ=−arccsc(6​)+2πn
Divide both sides by 3
3θ=−arccsc(6​)+2πn
Divide both sides by 333θ​=−3arccsc(6​)​+32πn​
Simplifyθ=−3arccsc(6​)​+32πn​
θ=−3arccsc(6​)​+32πn​
Solve 3θ=π+arccsc(6​)+2πn:θ=3π​+3arccsc(6​)​+32πn​
3θ=π+arccsc(6​)+2πn
Divide both sides by 3
3θ=π+arccsc(6​)+2πn
Divide both sides by 333θ​=3π​+3arccsc(6​)​+32πn​
Simplifyθ=3π​+3arccsc(6​)​+32πn​
θ=3π​+3arccsc(6​)​+32πn​
θ=−3arccsc(6​)​+32πn​,θ=3π​+3arccsc(6​)​+32πn​
Solutions for the range 0<θ<2πθ=3π+arccsc(6​)​,θ=3−arccsc(6​)+2π​,θ=33π+arccsc(6​)​,θ=3−arccsc(6​)+4π​,θ=35π+arccsc(6​)​,θ=3−arccsc(6​)+6π​
Combine all the solutionsθ=3arccsc(6​)​,θ=3π−arccsc(6​)​,θ=3arccsc(6​)+2π​,θ=33π−arccsc(6​)​,θ=3arccsc(6​)+4π​,θ=35π−arccsc(6​)​,θ=3π+arccsc(6​)​,θ=3−arccsc(6​)+2π​,θ=33π+arccsc(6​)​,θ=3−arccsc(6​)+4π​,θ=35π+arccsc(6​)​,θ=3−arccsc(6​)+6π​
Show solutions in decimal formθ=30.42053…​,θ=3π−0.42053…​,θ=30.42053…+2π​,θ=33π−0.42053…​,θ=30.42053…+4π​,θ=35π−0.42053…​,θ=3π+0.42053…​,θ=3−0.42053…+2π​,θ=33π+0.42053…​,θ=3−0.42053…+4π​,θ=35π+0.42053…​,θ=3−0.42053…+6π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(3)tan(3θ)-1=0,0<= θ<= 2pi(cot(θ)+1)(csc(θ)-1)=02sin(x)cos(x)=1cos(x)sin(x)+2sin(x)=0cos(x)sin(x)=-sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for csc(3θ)=6sin(3θ),0<θ<2pi ?

    The general solution for csc(3θ)=6sin(3θ),0<θ<2pi is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024