Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^{sin(x)}(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinsin(x)(x)=2

Solution

NoSolutionforx∈R
Solution steps
sinsin(x)(x)=2
Solve by substitution
sinsin(x)(x)=2
Let: sin(x)=uuu=2
uu=2:u=W0​(ln(2))ln(2)​
uu=2
Prepare uu=2for Lambert form:ue−uln(2)​=1
uu=2
xex=ais equation in Lambert form
Take both sides of the equation to the power of u1​(uu)u1​=2u1​
Simplify (uu)u1​:u
(uu)u1​
Apply exponent rule: (ab)c=abc, assuming a≥0=uuu1​
uu1​=1
uu1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
=u
u=2u1​
Multiply both sides by 2−u1​u⋅2−u1​=2u1​⋅2−u1​
Simplify 2u1​⋅2−u1​:1
2u1​⋅2−u1​
Apply exponent rule: ab⋅ac=ab+c2u1​⋅2−u1​=2u1​−u1​=2u1​−u1​
Add similar elements: 1⋅u1​−1⋅u1​=0=20
Apply rule a0=1,a=0=1
u⋅2−u1​=1
Apply exponent rules
u⋅2−u1​=1
Convert to base e:ueln(2)(−u1​)=1
Apply exponent rule: a=blogb​(a)2−u1​=(eln(2))−u1​u(eln(2))−u1​=1
Apply exponent rule: (ab)c=abc(eln(2))−u1​=eln(2)(−u1​)ueln(2)(−u1​)=1
ueln(2)(−u1​)=1
Simplifyue−uln(2)​=1
ue−uln(2)​=1
Rewrite the equation with uln(2)​=v and u=vln(2)​(vln(2)​)e−v=1
Rewrite (vln(2)​)e−v=1in Lambert form:vev=ln(2)
(vln(2)​)e−v=1
xex=ais equation in Lambert form
Multiply both sides by vvln(2)​e−vv=1⋅v
Simplifyln(2)e−v=v
Multiply both sides by evln(2)e−vev=vev
Simplify ln(2)e−vev:ln(2)
ln(2)e−vev
Apply exponent rule: ab⋅ac=ab+ce−vev=e−v+v=ln(2)e−v+v
Add similar elements: −v+v=0=ln(2)e0
Apply rule a0=1,a=0=1⋅ln(2)
Multiply: ln(2)⋅1=ln(2)=ln(2)
ln(2)=vev
Switch sidesvev=ln(2)
Solve vev=ln(2):v=W0​(ln(2))
vev=ln(2)
Solution for xex=awhere a≥0is principal branch of Lambert Wfunction: x=W0​(a)v=W0​(ln(2))
Verify Solutions:v=W0​(ln(2))True
Check the solutions by plugging them into (vln(2)​)e−v=1
Remove the ones that don't agree with the equation.
Plug in v=W0​(ln(2)):True
(W0​(ln(2))ln(2)​)e−W0​(ln(2))=1
(W0​(ln(2))ln(2)​)e−W0​(ln(2))=W0​(ln(2))e−W0​(ln(2))ln(2)​
(W0​(ln(2))ln(2)​)e−W0​(ln(2))
Remove parentheses: (a)=a=W0​(ln(2))ln(2)​e−W0​(ln(2))
Multiply fractions: a⋅cb​=ca⋅b​=W0​(ln(2))ln(2)e−W0​(ln(2))​
W0​(ln(2))e−W0​(ln(2))ln(2)​=1
True
The solution isv=W0​(ln(2))
Substitute back v=uln(2)​,solve for u
Solve uln(2)​=W0​(ln(2)):u=W0​(ln(2))ln(2)​
uln(2)​=W0​(ln(2))
Multiply both sides by u
uln(2)​=W0​(ln(2))
Multiply both sides by uuln(2)​u=W0​(ln(2))u
Simplifyln(2)=W0​(ln(2))u
ln(2)=W0​(ln(2))u
Switch sidesW0​(ln(2))u=ln(2)
Divide both sides by W0​(ln(2))
W0​(ln(2))u=ln(2)
Divide both sides by W0​(ln(2))W0​(ln(2))W0​(ln(2))u​=W0​(ln(2))ln(2)​
Simplifyu=W0​(ln(2))ln(2)​
u=W0​(ln(2))ln(2)​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of uln(2)​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=W0​(ln(2))ln(2)​
u=W0​(ln(2))ln(2)​
Substitute back u=sin(x)sin(x)=W0​(ln(2))ln(2)​
sin(x)=W0​(ln(2))ln(2)​
sin(x)=W0​(ln(2))ln(2)​:No Solution
sin(x)=W0​(ln(2))ln(2)​
−1≤sin(x)≤1NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos(x)+2=0cot(x)=-(sqrt(3))/3cos(4x)=12sin(2θ)+1=02sin(θ)-sin(2θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^{sin(x)}(x)=2 ?

    The general solution for sin^{sin(x)}(x)=2 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024