Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2-sqrt(-1-6sin(x))=sqrt(-4sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2−−1−6sin(x)​=−4sin(x)​

Solution

x=−0.30674…+2πn,x=π+0.30674…+2πn
+1
Degrees
x=−17.57542…∘+360∘n,x=197.57542…∘+360∘n
Solution steps
2−−1−6sin(x)​=−4sin(x)​
Solve by substitution
2−−1−6sin(x)​=−4sin(x)​
Let: sin(x)=u2−−1−6u​=−4u​
2−−1−6u​=−4u​:u=2−21+426​​
2−−1−6u​=−4u​
Remove square roots
2−−1−6u​=−4u​
Square both sides:−6u+3−4−1−6u​=−4u
2−−1−6u​=−4u​
(2−−1−6u​)2=(−4u​)2
Expand (2−−1−6u​)2:−6u+3−4−1−6u​
(2−−1−6u​)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2,b=−1−6u​
=22−2⋅2−1−6u​+(−1−6u​)2
Simplify 22−2⋅2−1−6u​+(−1−6u​)2:4−4−1−6u​+−1−6u
22−2⋅2−1−6u​+(−1−6u​)2
22=4
22
22=4=4
2⋅2−1−6u​=4−1−6u​
2⋅2−1−6u​
Multiply the numbers: 2⋅2=4=4−1−6u​
(−1−6u​)2=−1−6u
(−1−6u​)2
Apply radical rule: a​=a21​=((−1−6u)21​)2
Apply exponent rule: (ab)c=abc=(−1−6u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−1−6u
=4−4−1−6u​−1−6u
=4−4−1−6u​−1−6u
Refine=−6u+3−4−1−6u​
Expand (−4u​)2:−4u
(−4u​)2
Apply radical rule: a​=a21​=((−4u)21​)2
Apply exponent rule: (ab)c=abc=(−4u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−4u
−6u+3−4−1−6u​=−4u
−6u+3−4−1−6u​=−4u
Add 6u to both sides−6u+3−4−1−6u​+6u=−4u+6u
Simplify−4−1−6u​+3=2u
Subtract 3 from both sides−4−1−6u​+3−3=2u−3
Simplify−4−1−6u​=2u−3
Square both sides:−16−96u=4u2−12u+9
−6u+3−4−1−6u​=−4u
(−4−1−6u​)2=(2u−3)2
Expand (−4−1−6u​)2:−16−96u
(−4−1−6u​)2
Apply exponent rule: (−a)n=an,if n is even(−4−1−6u​)2=(4−1−6u​)2=(4−1−6u​)2
Apply exponent rule: (a⋅b)n=anbn=42(−1−6u​)2
(−1−6u​)2:−1−6u
Apply radical rule: a​=a21​=((−1−6u)21​)2
Apply exponent rule: (ab)c=abc=(−1−6u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−1−6u
=42(−1−6u)
42=16=16(−1−6u)
Expand 16(−1−6u):−16−96u
16(−1−6u)
Apply the distributive law: a(b−c)=ab−aca=16,b=−1,c=6u=16(−1)−16⋅6u
Apply minus-plus rules+(−a)=−a=−16⋅1−16⋅6u
Simplify −16⋅1−16⋅6u:−16−96u
−16⋅1−16⋅6u
Multiply the numbers: 16⋅1=16=−16−16⋅6u
Multiply the numbers: 16⋅6=96=−16−96u
=−16−96u
=−16−96u
Expand (2u−3)2:4u2−12u+9
(2u−3)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2u,b=3
=(2u)2−2⋅2u⋅3+32
Simplify (2u)2−2⋅2u⋅3+32:4u2−12u+9
(2u)2−2⋅2u⋅3+32
(2u)2=4u2
(2u)2
Apply exponent rule: (a⋅b)n=anbn=22u2
22=4=4u2
2⋅2u⋅3=12u
2⋅2u⋅3
Multiply the numbers: 2⋅2⋅3=12=12u
32=9
32
32=9=9
=4u2−12u+9
=4u2−12u+9
−16−96u=4u2−12u+9
−16−96u=4u2−12u+9
−16−96u=4u2−12u+9
Solve −16−96u=4u2−12u+9:u=2−21+426​​,u=−221+426​​
−16−96u=4u2−12u+9
Switch sides4u2−12u+9=−16−96u
Move 96uto the left side
4u2−12u+9=−16−96u
Add 96u to both sides4u2−12u+9+96u=−16−96u+96u
Simplify4u2+84u+9=−16
4u2+84u+9=−16
Move 16to the left side
4u2+84u+9=−16
Add 16 to both sides4u2+84u+9+16=−16+16
Simplify4u2+84u+25=0
4u2+84u+25=0
Solve with the quadratic formula
4u2+84u+25=0
Quadratic Equation Formula:
For a=4,b=84,c=25u1,2​=2⋅4−84±842−4⋅4⋅25​​
u1,2​=2⋅4−84±842−4⋅4⋅25​​
842−4⋅4⋅25​=1626​
842−4⋅4⋅25​
Multiply the numbers: 4⋅4⋅25=400=842−400​
842=7056=7056−400​
Subtract the numbers: 7056−400=6656=6656​
Prime factorization of 6656:29⋅13
6656
6656divides by 26656=3328⋅2=2⋅3328
3328divides by 23328=1664⋅2=2⋅2⋅1664
1664divides by 21664=832⋅2=2⋅2⋅2⋅832
832divides by 2832=416⋅2=2⋅2⋅2⋅2⋅416
416divides by 2416=208⋅2=2⋅2⋅2⋅2⋅2⋅208
208divides by 2208=104⋅2=2⋅2⋅2⋅2⋅2⋅2⋅104
104divides by 2104=52⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅52
52divides by 252=26⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅26
26divides by 226=13⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅13
=29⋅13
=29⋅13​
Apply exponent rule: ab+c=ab⋅ac=28⋅2⋅13​
Apply radical rule: =28​2⋅13​
Apply radical rule: 28​=228​=24=242⋅13​
Refine=1626​
u1,2​=2⋅4−84±1626​​
Separate the solutionsu1​=2⋅4−84+1626​​,u2​=2⋅4−84−1626​​
u=2⋅4−84+1626​​:2−21+426​​
2⋅4−84+1626​​
Multiply the numbers: 2⋅4=8=8−84+1626​​
Factor −84+1626​:4(−21+426​)
−84+1626​
Rewrite as=−4⋅21+4⋅426​
Factor out common term 4=4(−21+426​)
=84(−21+426​)​
Cancel the common factor: 4=2−21+426​​
u=2⋅4−84−1626​​:−221+426​​
2⋅4−84−1626​​
Multiply the numbers: 2⋅4=8=8−84−1626​​
Factor −84−1626​:−4(21+426​)
−84−1626​
Rewrite as=−4⋅21−4⋅426​
Factor out common term 4=−4(21+426​)
=−84(21+426​)​
Cancel the common factor: 4=−221+426​​
The solutions to the quadratic equation are:u=2−21+426​​,u=−221+426​​
u=2−21+426​​,u=−221+426​​
Verify Solutions:u=2−21+426​​True,u=−221+426​​False
Check the solutions by plugging them into 2−−1−6u​=−4u​
Remove the ones that don't agree with the equation.
Plug in u=2−21+426​​:True
2−−1−6(2−21+426​​)​=−4(2−21+426​​)​
2−−1−6(2−21+426​​)​=26​−4
2−−1−6(2−21+426​​)​
Remove parentheses: (a)=a=2−−1−6⋅2−21+426​​​
−1−6⋅2−21+426​​​=6−26​
−1−6⋅2−21+426​​​
6⋅2−21+426​​=3(426​−21)
6⋅2−21+426​​
Multiply fractions: a⋅cb​=ca⋅b​=2(−21+426​)⋅6​
Divide the numbers: 26​=3=3(426​−21)
=−1−3(426​−21)​
Expand −1−3(426​−21):62−1226​
−1−3(426​−21)
Expand −3(426​−21):−1226​+63
−3(426​−21)
Apply the distributive law: a(b−c)=ab−aca=−3,b=426​,c=21=−3⋅426​−(−3)⋅21
Apply minus-plus rules−(−a)=a=−3⋅426​+3⋅21
Simplify −3⋅426​+3⋅21:−1226​+63
−3⋅426​+3⋅21
Multiply the numbers: 3⋅4=12=−1226​+3⋅21
Multiply the numbers: 3⋅21=63=−1226​+63
=−1226​+63
=−1−1226​+63
Add/Subtract the numbers: −1+63=62=62−1226​
=62−1226​​
=26−1226​+36​
=(26​)2−1226​+(36​)2​
36​=6
36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
=(26​)2−1226​+62​
226​⋅6=1226​
226​⋅6
Multiply the numbers: 2⋅6=12=1226​
=(26​)2−226​⋅6+62​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2(26​)2−226​⋅6+62=(26​−6)2=(26​−6)2​
Apply exponent rule: (−a)n=an,if n is even(26​−6)2=(6−26​)2=(6−26​)2​
Apply radical rule: (6−26​)2​=6−26​=6−26​
=2−(6−26​)
−(6−26​):−6+26​
−(6−26​)
Distribute parentheses=−(6)−(−26​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−6+26​
=2−6+26​
Subtract the numbers: 2−6=−4=26​−4
−4(2−21+426​​)​=2​−426​+21​
−4(2−21+426​​)​
Remove parentheses: (a)=a=−4⋅2−21+426​​​
Multiply −4⋅2−21+426​​:−2(426​−21)
−4⋅2−21+426​​
Multiply fractions: a⋅cb​=ca⋅b​=−2(−21+426​)⋅4​
Divide the numbers: 24​=2=−2(426​−21)
=−2(426​−21)​
Apply radical rule: assuming a≥0,b≥0=2​−(426​−21)​
Expand −(426​−21):−426​+21
−(426​−21)
Distribute parentheses=−(426​)−(−21)
Apply minus-plus rules−(−a)=a,−(a)=−a=−426​+21
=2​21−426​​
26​−4=2​−426​+21​
True
Plug in u=−221+426​​:False
2−−1−6(−221+426​​)​=−4(−221+426​​)​
2−−1−6(−221+426​​)​=−4−26​
2−−1−6(−221+426​​)​
Apply rule −(−a)=a=2−−1+6⋅221+426​​​
−1+6⋅221+426​​​=26​+6
−1+6⋅221+426​​​
6⋅221+426​​=3(21+426​)
6⋅221+426​​
Multiply fractions: a⋅cb​=ca⋅b​=2(21+426​)⋅6​
Divide the numbers: 26​=3=3(21+426​)
=−1+3(21+426​)​
Expand −1+3(21+426​):62+1226​
−1+3(21+426​)
Expand 3(21+426​):63+1226​
3(21+426​)
Apply the distributive law: a(b+c)=ab+aca=3,b=21,c=426​=3⋅21+3⋅426​
Simplify 3⋅21+3⋅426​:63+1226​
3⋅21+3⋅426​
Multiply the numbers: 3⋅21=63=63+3⋅426​
Multiply the numbers: 3⋅4=12=63+1226​
=63+1226​
=−1+63+1226​
Add/Subtract the numbers: −1+63=62=62+1226​
=62+1226​​
=26+1226​+36​
=(26​)2+1226​+(36​)2​
36​=6
36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
=(26​)2+1226​+62​
226​⋅6=1226​
226​⋅6
Multiply the numbers: 2⋅6=12=1226​
=(26​)2+226​⋅6+62​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2(26​)2+226​⋅6+62=(26​+6)2=(26​+6)2​
Apply radical rule: (26​+6)2​=26​+6=26​+6
=2−(6+26​)
−(26​+6):−26​−6
−(26​+6)
Distribute parentheses=−(26​)−(6)
Apply minus-plus rules+(−a)=−a=−26​−6
=2−26​−6
Subtract the numbers: 2−6=−4=−4−26​
−4(−221+426​​)​=2​21+426​​
−4(−221+426​​)​
Apply rule −(−a)=a=4⋅221+426​​​
Multiply 4⋅221+426​​:2(21+426​)
4⋅221+426​​
Multiply fractions: a⋅cb​=ca⋅b​=2(21+426​)⋅4​
Divide the numbers: 24​=2=2(21+426​)
=2(21+426​)​
Apply radical rule: assuming a≥0,b≥0=2​21+426​​
−4−26​=2​21+426​​
False
The solution isu=2−21+426​​
Substitute back u=sin(x)sin(x)=2−21+426​​
sin(x)=2−21+426​​
sin(x)=2−21+426​​:x=arcsin(2−21+426​​)+2πn,x=π+arcsin(−2−21+426​​)+2πn
sin(x)=2−21+426​​
Apply trig inverse properties
sin(x)=2−21+426​​
General solutions for sin(x)=2−21+426​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(2−21+426​​)+2πn,x=π+arcsin(−2−21+426​​)+2πn
x=arcsin(2−21+426​​)+2πn,x=π+arcsin(−2−21+426​​)+2πn
Combine all the solutionsx=arcsin(2−21+426​​)+2πn,x=π+arcsin(−2−21+426​​)+2πn
Show solutions in decimal formx=−0.30674…+2πn,x=π+0.30674…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(2)sin(x/2)-1=0cos^2(x)-sin^2(x)+sin(x)=02tan^2(t)=-3sec(t)tan^2(x)+3=04cos(θ)+1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2-sqrt(-1-6sin(x))=sqrt(-4sin(x)) ?

    The general solution for 2-sqrt(-1-6sin(x))=sqrt(-4sin(x)) is x=-0.30674…+2pin,x=pi+0.30674…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024