解答
cos(x)−sin(2x)=cos(3x)−sin(4x)
解答
x=2π+2πn,x=23π+2πn,x=2πn,x=π+2πn,x=0.94247…+2πn,x=π−0.94247…+2πn,x=−0.31415…+2πn,x=π+0.31415…+2πn
+1
度数
x=90∘+360∘n,x=270∘+360∘n,x=0∘+360∘n,x=180∘+360∘n,x=54∘+360∘n,x=126∘+360∘n,x=−18∘+360∘n,x=198∘+360∘n求解步骤
cos(x)−sin(2x)=cos(3x)−sin(4x)
两边减去 cos(3x)−sin(4x)cos(x)−sin(2x)−cos(3x)+sin(4x)=0
使用三角恒等式改写
−cos(3x)+cos(x)−sin(2x)+sin(4x)
使用和差化积恒等式: sin(s)−sin(t)=2sin(2s−t)cos(2s+t)=−cos(3x)+cos(x)+2sin(24x−2x)cos(24x+2x)
2sin(24x−2x)cos(24x+2x)=2sin(x)cos(3x)
2sin(24x−2x)cos(24x+2x)
24x−2x=x
24x−2x
同类项相加:4x−2x=2x=22x
数字相除:22=1=x
=2sin(x)cos(24x+2x)
24x+2x=3x
24x+2x
同类项相加:4x+2x=6x=26x
数字相除:26=3=3x
=2sin(x)cos(3x)
=−cos(3x)+cos(x)+2sin(x)cos(3x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
使用三角恒等式改写
cos(3x)
改写为=cos(2x+x)
使用角和恒等式: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
使用倍角公式: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
化简 cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
使用指数法则: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
数字相加:1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
使用倍角公式: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
乘开 (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
乘开 cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
使用分配律: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
化简 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
数字相加:2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
乘以:1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
乘开 −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
使用分配律: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
使用加减运算法则−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
化简 −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
数字相乘:2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
数字相加:2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
化简 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
对同类项分组=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
同类项相加:2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
同类项相加:−cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−(4cos3(x)−3cos(x))+cos(x)+2(4cos3(x)−3cos(x))sin(x)
化简 −(4cos3(x)−3cos(x))+cos(x)+2(4cos3(x)−3cos(x))sin(x):−4cos3(x)+4cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
−(4cos3(x)−3cos(x))+cos(x)+2(4cos3(x)−3cos(x))sin(x)
=−(4cos3(x)−3cos(x))+cos(x)+2sin(x)(4cos3(x)−3cos(x))
−(4cos3(x)−3cos(x)):−4cos3(x)+3cos(x)
−(4cos3(x)−3cos(x))
打开括号=−(4cos3(x))−(−3cos(x))
使用加减运算法则−(−a)=a,−(a)=−a=−4cos3(x)+3cos(x)
=−4cos3(x)+3cos(x)+cos(x)+2(4cos3(x)−3cos(x))sin(x)
乘开 2sin(x)(4cos3(x)−3cos(x)):8cos3(x)sin(x)−6sin(x)cos(x)
2sin(x)(4cos3(x)−3cos(x))
使用分配律: a(b−c)=ab−aca=2sin(x),b=4cos3(x),c=3cos(x)=2sin(x)⋅4cos3(x)−2sin(x)⋅3cos(x)
=2⋅4cos3(x)sin(x)−2⋅3sin(x)cos(x)
化简 2⋅4cos3(x)sin(x)−2⋅3sin(x)cos(x):8cos3(x)sin(x)−6sin(x)cos(x)
2⋅4cos3(x)sin(x)−2⋅3sin(x)cos(x)
数字相乘:2⋅4=8=8cos3(x)sin(x)−2⋅3sin(x)cos(x)
数字相乘:2⋅3=6=8cos3(x)sin(x)−6sin(x)cos(x)
=8cos3(x)sin(x)−6sin(x)cos(x)
=−4cos3(x)+3cos(x)+cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
同类项相加:3cos(x)+cos(x)=4cos(x)=−4cos3(x)+4cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
=−4cos3(x)+4cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
4cos(x)−4cos3(x)−6cos(x)sin(x)+8cos3(x)sin(x)=0
分解 4cos(x)−4cos3(x)−6cos(x)sin(x)+8cos3(x)sin(x):2cos(x)(2−2cos2(x)−3sin(x)+4cos2(x)sin(x))
4cos(x)−4cos3(x)−6cos(x)sin(x)+8cos3(x)sin(x)
使用指数法则: ab+c=abacsin(x)cos3(x)=cos(x)cos2(x),cos3(x)=cos(x)cos2(x)=4cos(x)−4cos(x)cos2(x)−6sin(x)cos(x)+8cos(x)cos2(x)
将 8 改写为 4⋅2将 −6 改写为 3⋅2=2⋅2cos(x)+2⋅2cos(x)cos2(x)+3⋅2sin(x)cos(x)+2⋅2⋅2cos(x)cos2(x)
因式分解出通项 2cos(x)=2cos(x)(2−2cos2(x)−3sin(x)+4sin(x)cos2(x))
2cos(x)(2−2cos2(x)−3sin(x)+4cos2(x)sin(x))=0
分别求解每个部分cos(x)=0or2−2cos2(x)−3sin(x)+4cos2(x)sin(x)=0
cos(x)=0:x=2π+2πn,x=23π+2πn
cos(x)=0
cos(x)=0的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=2π+2πn,x=23π+2πn
x=2π+2πn,x=23π+2πn
2−2cos2(x)−3sin(x)+4cos2(x)sin(x)=0:x=2πn,x=π+2πn,x=arcsin(41+5)+2πn,x=π−arcsin(41+5)+2πn,x=arcsin(41−5)+2πn,x=π+arcsin(−41−5)+2πn
2−2cos2(x)−3sin(x)+4cos2(x)sin(x)=0
使用三角恒等式改写
2−2cos2(x)−3sin(x)+4cos2(x)sin(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=2−2(1−sin2(x))−3sin(x)+4(1−sin2(x))sin(x)
化简 2−2(1−sin2(x))−3sin(x)+4(1−sin2(x))sin(x):2sin2(x)+sin(x)−4sin3(x)
2−2(1−sin2(x))−3sin(x)+4(1−sin2(x))sin(x)
=2−2(1−sin2(x))−3sin(x)+4sin(x)(1−sin2(x))
乘开 −2(1−sin2(x)):−2+2sin2(x)
−2(1−sin2(x))
使用分配律: a(b−c)=ab−aca=−2,b=1,c=sin2(x)=−2⋅1−(−2)sin2(x)
使用加减运算法则−(−a)=a=−2⋅1+2sin2(x)
数字相乘:2⋅1=2=−2+2sin2(x)
=2−2+2sin2(x)−3sin(x)+4(1−sin2(x))sin(x)
乘开 4sin(x)(1−sin2(x)):4sin(x)−4sin3(x)
4sin(x)(1−sin2(x))
使用分配律: a(b−c)=ab−aca=4sin(x),b=1,c=sin2(x)=4sin(x)⋅1−4sin(x)sin2(x)
=4⋅1⋅sin(x)−4sin2(x)sin(x)
化简 4⋅1⋅sin(x)−4sin2(x)sin(x):4sin(x)−4sin3(x)
4⋅1⋅sin(x)−4sin2(x)sin(x)
4⋅1⋅sin(x)=4sin(x)
4⋅1⋅sin(x)
数字相乘:4⋅1=4=4sin(x)
4sin2(x)sin(x)=4sin3(x)
4sin2(x)sin(x)
使用指数法则: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=4sin2+1(x)
数字相加:2+1=3=4sin3(x)
=4sin(x)−4sin3(x)
=4sin(x)−4sin3(x)
=2−2+2sin2(x)−3sin(x)+4sin(x)−4sin3(x)
化简 2−2+2sin2(x)−3sin(x)+4sin(x)−4sin3(x):2sin2(x)+sin(x)−4sin3(x)
2−2+2sin2(x)−3sin(x)+4sin(x)−4sin3(x)
同类项相加:−3sin(x)+4sin(x)=sin(x)=2−2+2sin2(x)+sin(x)−4sin3(x)
2−2=0=2sin2(x)+sin(x)−4sin3(x)
=2sin2(x)+sin(x)−4sin3(x)
=2sin2(x)+sin(x)−4sin3(x)
sin(x)+2sin2(x)−4sin3(x)=0
用替代法求解
sin(x)+2sin2(x)−4sin3(x)=0
令:sin(x)=uu+2u2−4u3=0
u+2u2−4u3=0:u=0,u=41+5,u=41−5
u+2u2−4u3=0
因式分解 u+2u2−4u3:−u(4u2−2u−1)
u+2u2−4u3
使用指数法则: ab+c=abacu2=uu=−4u2u+2uu+u
因式分解出通项 −u=−u(4u2−2u−1)
−u(4u2−2u−1)=0
使用零因数法则: If ab=0then a=0or b=0u=0or4u2−2u−1=0
解 4u2−2u−1=0:u=41+5,u=41−5
4u2−2u−1=0
使用求根公式求解
4u2−2u−1=0
二次方程求根公式:
若 a=4,b=−2,c=−1u1,2=2⋅4−(−2)±(−2)2−4⋅4(−1)
u1,2=2⋅4−(−2)±(−2)2−4⋅4(−1)
(−2)2−4⋅4(−1)=25
(−2)2−4⋅4(−1)
使用法则 −(−a)=a=(−2)2+4⋅4⋅1
使用指数法则: (−a)n=an,若 n 是偶数(−2)2=22=22+4⋅4⋅1
数字相乘:4⋅4⋅1=16=22+16
22=4=4+16
数字相加:4+16=20=20
20质因数分解:22⋅5
20
20除以 220=10⋅2=2⋅10
10除以 210=5⋅2=2⋅2⋅5
2,5 都是质数,因此无法进一步因数分解=2⋅2⋅5
=22⋅5
=22⋅5
使用根式运算法则: nab=nanb=522
使用根式运算法则: nan=a22=2=25
u1,2=2⋅4−(−2)±25
将解分隔开u1=2⋅4−(−2)+25,u2=2⋅4−(−2)−25
u=2⋅4−(−2)+25:41+5
2⋅4−(−2)+25
使用法则 −(−a)=a=2⋅42+25
数字相乘:2⋅4=8=82+25
分解 2+25:2(1+5)
2+25
改写为=2⋅1+25
因式分解出通项 2=2(1+5)
=82(1+5)
约分:2=41+5
u=2⋅4−(−2)−25:41−5
2⋅4−(−2)−25
使用法则 −(−a)=a=2⋅42−25
数字相乘:2⋅4=8=82−25
分解 2−25:2(1−5)
2−25
改写为=2⋅1−25
因式分解出通项 2=2(1−5)
=82(1−5)
约分:2=41−5
二次方程组的解是:u=41+5,u=41−5
解为u=0,u=41+5,u=41−5
u=sin(x)代回sin(x)=0,sin(x)=41+5,sin(x)=41−5
sin(x)=0,sin(x)=41+5,sin(x)=41−5
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=41+5:x=arcsin(41+5)+2πn,x=π−arcsin(41+5)+2πn
sin(x)=41+5
使用反三角函数性质
sin(x)=41+5
sin(x)=41+5的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(41+5)+2πn,x=π−arcsin(41+5)+2πn
x=arcsin(41+5)+2πn,x=π−arcsin(41+5)+2πn
sin(x)=41−5:x=arcsin(41−5)+2πn,x=π+arcsin(−41−5)+2πn
sin(x)=41−5
使用反三角函数性质
sin(x)=41−5
sin(x)=41−5的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(41−5)+2πn,x=π+arcsin(−41−5)+2πn
x=arcsin(41−5)+2πn,x=π+arcsin(−41−5)+2πn
合并所有解x=2πn,x=π+2πn,x=arcsin(41+5)+2πn,x=π−arcsin(41+5)+2πn,x=arcsin(41−5)+2πn,x=π+arcsin(−41−5)+2πn
合并所有解x=2π+2πn,x=23π+2πn,x=2πn,x=π+2πn,x=arcsin(41+5)+2πn,x=π−arcsin(41+5)+2πn,x=arcsin(41−5)+2πn,x=π+arcsin(−41−5)+2πn
以小数形式表示解x=2π+2πn,x=23π+2πn,x=2πn,x=π+2πn,x=0.94247…+2πn,x=π−0.94247…+2πn,x=−0.31415…+2πn,x=π+0.31415…+2πn