해법
3tanh(2θ)=5sech(θ)+1
해법
θ=ln(4.82043…)
+1
도
θ=90.11846…∘솔루션 단계
3tanh(2θ)=5sech(θ)+1
삼각성을 사용하여 다시 쓰기
3tanh(2θ)=5sech(θ)+1
하이퍼볼라식별사용: tanh(x)=ex+e−xex−e−x3⋅e2θ+e−2θe2θ−e−2θ=5sech(θ)+1
하이퍼볼라식별사용: sech(x)=ex+e−x23⋅e2θ+e−2θe2θ−e−2θ=5⋅eθ+e−θ2+1
3⋅e2θ+e−2θe2θ−e−2θ=5⋅eθ+e−θ2+1
3⋅e2θ+e−2θe2θ−e−2θ=5⋅eθ+e−θ2+1:θ=ln(4.82043…)
3⋅e2θ+e−2θe2θ−e−2θ=5⋅eθ+e−θ2+1
지수 규칙 적용
3⋅e2θ+e−2θe2θ−e−2θ=5⋅eθ+e−θ2+1
지수 규칙 적용: abc=(ab)ce2θ=(eθ)2,e−2θ=(eθ)−2,e−θ=(eθ)−13⋅(eθ)2+(eθ)−2(eθ)2−(eθ)−2=5⋅eθ+(eθ)−12+1
3⋅(eθ)2+(eθ)−2(eθ)2−(eθ)−2=5⋅eθ+(eθ)−12+1
다음으로 방정식 다시 쓰기 eθ=u3⋅(u)2+(u)−2(u)2−(u)−2=5⋅u+(u)−12+1
3⋅u2+u−2u2−u−2=5⋅u+u−12+1해결 :u≈−0.45284…,u≈4.82043…
3⋅u2+u−2u2−u−2=5⋅u+u−12+1
다듬다u4+13(u4−1)=u2+110u+1
최소공배수로 곱하기
u4+13(u4−1)=u2+110u+1
최소공통승수 찾기 u4+1,u2+1:(u2+1)(u2+2u+1)(u2−2u+1)
u4+1,u2+1
최저공통승수 (LCM)
인자 식
u4+1요인:(u2+2u+1)(u2−2u+1)
u4+1
u4+1=(u2+2u+1)(u2−2u+1)=(u2+2u+1)(u2−2u+1)
다음 중 하나에 나타나는 요인으로 구성된 식을 계산합니다 (u2+2u+1)(u2−2u+1) 혹은 u2+1=(u2+1)(u2+2u+1)(u2−2u+1)
최소공약배수=(u2+1)(u2+2u+1)(u2−2u+1)u4+13(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)=u2+110u(u2+1)(u2+2u+1)(u2−2u+1)+1⋅(u2+1)(u2+2u+1)(u2−2u+1)
단순화
u4+13(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)=u2+110u(u2+1)(u2+2u+1)(u2−2u+1)+1⋅(u2+1)(u2+2u+1)(u2−2u+1)
u4+13(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)간소화하다 :3(u+1)(u−1)(u2+1)2
u4+13(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)
다중 분수: a⋅cb=ca⋅b=u4+13(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)
3(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)요인:3(u+1)(u−1)(u2+1)2(u2+2u+1)(u2−2u+1)
3(u4−1)(u2+1)(u2+2u+1)(u2−2u+1)
u4−1요인:(u2+1)(u+1)(u−1)
u4−1
u4−1(u2)2−12 로 다시 씁니다
u4−1
112 로 다시 씁니다 =u4−12
지수 규칙 적용: abc=(ab)cu4=(u2)2=(u2)2−12
=(u2)2−12
두 제곱 공식의 차이 적용: x2−y2=(x+y)(x−y)(u2)2−12=(u2+1)(u2−1)=(u2+1)(u2−1)
u2−1요인:(u+1)(u−1)
u2−1
112 로 다시 씁니다 =u2−12
두 제곱 공식의 차이 적용: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u2+1)(u+1)(u−1)
=3(u+1)(u−1)(u2+1)2(u2+2u+1)(u2−2u+1)
=u4+13(u+1)(u−1)(u2+1)2(u2+2u+1)(u2−2u+1)
u4+1=(u2+2u+1)(u2−2u+1)=(u2+2u+1)(u2−2u+1)3(u+1)(u−1)(u2+1)2(u2+2u+1)(u2−2u+1)
(u2+2u+1)(u2−2u+1)3(u+1)(u−1)(u2+1)2(u2+2u+1)(u2−2u+1)취소하다 :3(u+1)(u−1)(u2+1)2
(u2+2u+1)(u2−2u+1)3(u+1)(u−1)(u2+1)2(u2+2u+1)(u2−2u+1)
공통 요인 취소: u2+2u+1=u2−2u+13(u+1)(u−1)(u2+1)2(u2−2u+1)
공통 요인 취소: u2−2u+1=3(u+1)(u−1)(u2+1)2
=3(u+1)(u−1)(u2+1)2
u2+110u(u2+1)(u2+2u+1)(u2−2u+1)간소화하다 :10u(u2+2u+1)(u2−2u+1)
u2+110u(u2+1)(u2+2u+1)(u2−2u+1)
다중 분수: a⋅cb=ca⋅b=u2+110u(u2+1)(u2+2u+1)(u2−2u+1)
공통 요인 취소: u2+1=10u(u2+2u+1)(u2−2u+1)
1⋅(u2+1)(u2+2u+1)(u2−2u+1)간소화하다 :(u2+1)(u2+2u+1)(u2−2u+1)
1⋅(u2+1)(u2+2u+1)(u2−2u+1)
곱하다: 1⋅(u2+1)=(u2+1)=(u2+1)(u2+2u+1)(u2−2u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1)해결 :u≈−0.45284…,u≈4.82043…
3(u+1)(u−1)(u2+1)2=10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1)
3(u+1)(u−1)(u2+1)2 확장 :3u6+3u4−3u2−3
3(u+1)(u−1)(u2+1)2
(u2+1)2=u4+2u2+1
(u2+1)2
완벽한 정사각형 공식 적용: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
(u2)2+2u2⋅1+12단순화하세요:u4+2u2+1
(u2)2+2u2⋅1+12
규칙 적용 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
지수 규칙 적용: (ab)c=abc=u2⋅2
숫자를 곱하시오: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
숫자를 곱하시오: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=3(u+1)(u−1)(u4+2u2+1)
(u+1)(u−1)확대한다:u2−1
(u+1)(u−1)
두 제곱 공식의 차이 적용: (a+b)(a−b)=a2−b2a=u,b=1=u2−12
규칙 적용 1a=112=1=u2−1
=3(u2−1)(u4+2u2+1)
(u2−1)(u4+2u2+1)확대한다:u6+u4−u2−1
(u2−1)(u4+2u2+1)
괄호 배포=u2u4+u2⋅2u2+u2⋅1+(−1)u4+(−1)⋅2u2+(−1)⋅1
마이너스 플러스 규칙 적용+(−a)=−a=u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1
u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1단순화하세요:u6+u4−u2−1
u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1
u4u2=u6
u4u2
지수 규칙 적용: ab⋅ac=ab+cu4u2=u4+2=u4+2
숫자 추가: 4+2=6=u6
2u2u2=2u4
2u2u2
지수 규칙 적용: ab⋅ac=ab+cu2u2=u2+2=2u2+2
숫자 추가: 2+2=4=2u4
1⋅u2=u2
1⋅u2
곱하다: 1⋅u2=u2=u2
1⋅u4=u4
1⋅u4
곱하다: 1⋅u4=u4=u4
1⋅2u2=2u2
1⋅2u2
숫자를 곱하시오: 1⋅2=2=2u2
1⋅1=1
1⋅1
숫자를 곱하시오: 1⋅1=1=1
=u6+2u4+u2−u4−2u2−1
집단적 용어=u6+2u4−u4+u2−2u2−1
유사 요소 추가: u2−2u2=−u2=u6+2u4−u4−u2−1
유사 요소 추가: 2u4−u4=u4=u6+u4−u2−1
=u6+u4−u2−1
=3(u6+u4−u2−1)
3(u6+u4−u2−1)확대한다:3u6+3u4−3u2−3
3(u6+u4−u2−1)
괄호 배포=3u6+3u4+3(−u2)+3(−1)
마이너스 플러스 규칙 적용+(−a)=−a=3u6+3u4−3u2−3⋅1
숫자를 곱하시오: 3⋅1=3=3u6+3u4−3u2−3
=3u6+3u4−3u2−3
10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1) 확장 :10u5+10u+u6+u4+u2+1
10u(u2+2u+1)(u2−2u+1)+(u2+1)(u2+2u+1)(u2−2u+1)
10u(u2+2u+1)(u2−2u+1)확대한다:10u5+10u
(u2+2u+1)(u2−2u+1)확대한다:u4+1
(u2+2u+1)(u2−2u+1)
괄호 배포=u2u2+u2(−2u)+u2⋅1+2uu2+2u(−2u)+2u⋅1+1⋅u2+1⋅(−2u)+1⋅1
마이너스 플러스 규칙 적용+(−a)=−a=u2u2−2u2u+1⋅u2+2u2u−22uu+1⋅2u+1⋅u2−1⋅2u+1⋅1
u2u2−2u2u+1⋅u2+2u2u−22uu+1⋅2u+1⋅u2−1⋅2u+1⋅1단순화하세요:u4+1
u2u2−2u2u+1⋅u2+2u2u−22uu+1⋅2u+1⋅u2−1⋅2u+1⋅1
집단적 용어=u2u2−2u2u+1⋅u2+2u2u+1⋅u2−22uu+1⋅2u−1⋅2u+1⋅1
유사 요소 추가: 1⋅2u−1⋅2u=0=u2u2−2u2u+1⋅u2+2u2u+1⋅u2−22uu+1⋅1
유사 요소 추가: −2u2u+2u2u=0=u2u2+1⋅u2+1⋅u2−22uu+1⋅1
유사 요소 추가: 1⋅u2+1⋅u2=2u2=u2u2+2u2−22uu+1⋅1
u2u2=u4
u2u2
지수 규칙 적용: ab⋅ac=ab+cu2u2=u2+2=u2+2
숫자 추가: 2+2=4=u4
22uu=2u2
22uu
급진적인 규칙 적용: aa=a22=2=2uu
지수 규칙 적용: ab⋅ac=ab+cuu=u1+1=2u1+1
숫자 추가: 1+1=2=2u2
1⋅1=1
1⋅1
숫자를 곱하시오: 1⋅1=1=1
=u4+2u2−2u2+1
유사 요소 추가: 2u2−2u2=0=u4+1
=u4+1
=10u(u4+1)
10u(u4+1)확대한다:10u5+10u
10u(u4+1)
분배 법칙 적용: a(b+c)=ab+aca=10u,b=u4,c=1=10uu4+10u⋅1
=10u4u+10⋅1⋅u
10u4u+10⋅1⋅u단순화하세요:10u5+10u
10u4u+10⋅1⋅u
10u4u=10u5
10u4u
지수 규칙 적용: ab⋅ac=ab+cu4u=u4+1=10u4+1
숫자 추가: 4+1=5=10u5
10⋅1⋅u=10u
10⋅1⋅u
숫자를 곱하시오: 10⋅1=10=10u
=10u5+10u
=10u5+10u
=10u5+10u
=10u5+10u+(u2+1)(u2+2u+1)(u2−2u+1)
(u2+1)(u2+2u+1)(u2−2u+1)확대한다:u6+u4+u2+1
(u2+1)(u2+2u+1)확대한다:u4+2u3+2u2+2u+1
(u2+1)(u2+2u+1)
괄호 배포=u2u2+u22u+u2⋅1+1⋅u2+1⋅2u+1⋅1
=u2u2+2u2u+1⋅u2+1⋅u2+1⋅2u+1⋅1
u2u2+2u2u+1⋅u2+1⋅u2+1⋅2u+1⋅1단순화하세요:u4+2u3+2u2+2u+1
u2u2+2u2u+1⋅u2+1⋅u2+1⋅2u+1⋅1
유사 요소 추가: 1⋅u2+1⋅u2=2u2=u2u2+2u2u+2u2+1⋅2u+1⋅1
u2u2=u4
u2u2
지수 규칙 적용: ab⋅ac=ab+cu2u2=u2+2=u2+2
숫자 추가: 2+2=4=u4
2u2u=2u3
2u2u
지수 규칙 적용: ab⋅ac=ab+cu2u=u2+1=2u2+1
숫자 추가: 2+1=3=2u3
1⋅2u=2u
1⋅2u
곱하다: 1⋅2=2=2u
1⋅1=1
1⋅1
숫자를 곱하시오: 1⋅1=1=1
=u4+2u3+2u2+2u+1
=u4+2u3+2u2+2u+1
=(u4+2u3+2u2+2u+1)(u2−2u+1)
(u4+2u3+2u2+2u+1)(u2−2u+1)확대한다:u6+u4+u2+1
(u4+2u3+2u2+2u+1)(u2−2u+1)
괄호 배포=u4u2+u4(−2u)+u4⋅1+2u3u2+2u3(−2u)+2u3⋅1+2u2u2+2u2(−2u)+2u2⋅1+2uu2+2u(−2u)+2u⋅1+1⋅u2+1⋅(−2u)+1⋅1
마이너스 플러스 규칙 적용+(−a)=−a=u4u2−2u4u+1⋅u4+2u3u2−22u3u+1⋅2u3+2u2u2−22u2u+2⋅1⋅u2+2u2u−22uu+1⋅2u+1⋅u2−1⋅2u+1⋅1
u4u2−2u4u+1⋅u4+2u3u2−22u3u+1⋅2u3+2u2u2−22u2u+2⋅1⋅u2+2u2u−22uu+1⋅2u+1⋅u2−1⋅2u+1⋅1단순화하세요:u6+u4+u2+1
u4u2−2u4u+1⋅u4+2u3u2−22u3u+1⋅2u3+2u2u2−22u2u+2⋅1⋅u2+2u2u−22uu+1⋅2u+1⋅u2−1⋅2u+1⋅1
집단적 용어=u4u2−2u4u+1⋅u4+2u3u2−22u3u+1⋅2u3+2u2u2−22u2u+2⋅1⋅u2+2u2u+1⋅u2−22uu+1⋅2u−1⋅2u+1⋅1
유사 요소 추가: 1⋅2u−1⋅2u=0=u4u2−2u4u+1⋅u4+2u3u2−22u3u+1⋅2u3+2u2u2−22u2u+2⋅1⋅u2+2u2u+1⋅u2−22uu+1⋅1
유사 요소 추가: −22u2u+2u2u=−2u2u=u4u2−2u4u+1⋅u4+2u3u2−22u3u+1⋅2u3+2u2u2−2u2u+2⋅1⋅u2+1⋅u2−22uu+1⋅1
u4u2=u6
u4u2
지수 규칙 적용: ab⋅ac=ab+cu4u2=u4+2=u4+2
숫자 추가: 4+2=6=u6
2u4u=2u5
2u4u
지수 규칙 적용: ab⋅ac=ab+cu4u=u4+1=2u4+1
숫자 추가: 4+1=5=2u5
1⋅u4=u4
1⋅u4
곱하다: 1⋅u4=u4=u4
2u3u2=2u5
2u3u2
지수 규칙 적용: ab⋅ac=ab+cu3u2=u3+2=2u3+2
숫자 추가: 3+2=5=2u5
22u3u=2u4
22u3u
급진적인 규칙 적용: aa=a22=2=2u3u
지수 규칙 적용: ab⋅ac=ab+cu3u=u3+1=2u3+1
숫자 추가: 3+1=4=2u4
1⋅2u3=2u3
1⋅2u3
곱하다: 1⋅2=2=2u3
2u2u2=2u4
2u2u2
지수 규칙 적용: ab⋅ac=ab+cu2u2=u2+2=2u2+2
숫자 추가: 2+2=4=2u4
2u2u=2u3
2u2u
지수 규칙 적용: ab⋅ac=ab+cu2u=u2+1=2u2+1
숫자 추가: 2+1=3=2u3
2⋅1⋅u2=2u2
2⋅1⋅u2
숫자를 곱하시오: 2⋅1=2=2u2
1⋅u2=u2
1⋅u2
곱하다: 1⋅u2=u2=u2
22uu=2u2
22uu
급진적인 규칙 적용: aa=a22=2=2uu
지수 규칙 적용: ab⋅ac=ab+cuu=u1+1=2u1+1
숫자 추가: 1+1=2=2u2
1⋅1=1
1⋅1
숫자를 곱하시오: 1⋅1=1=1
=u6−2u5+u4+2u5−2u4+2u3+2u4−2u3+2u2+u2−2u2+1
집단적 용어=u6−2u5+2u5+u4−2u4+2u4+2u3−2u3+2u2+u2−2u2+1
유사 요소 추가: 2u3−2u3=0=u6−2u5+2u5+u4−2u4+2u4+2u2+u2−2u2+1
유사 요소 추가: −2u5+2u5=0=u6+u4−2u4+2u4+2u2+u2−2u2+1
유사 요소 추가: 2u2+u2−2u2=u2=u6+u4−2u4+2u4+u2+1
유사 요소 추가: u4−2u4+2u4=u4=u6+u4+u2+1
=u6+u4+u2+1
=u6+u4+u2+1
=10u5+10u+u6+u4+u2+1
3u6+3u4−3u2−3=10u5+10u+u6+u4+u2+1
측면 전환10u5+10u+u6+u4+u2+1=3u6+3u4−3u2−3
빼다 3u6+3u4−3u2−3 양쪽에서10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)=3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
단순화
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)=3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)간소화하다 :−2u6+10u5−2u4+4u2+10u+4
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)
−(3u6+3u4−3u2−3):−3u6−3u4+3u2+3
−(3u6+3u4−3u2−3)
괄호 배포=−(3u6)−(3u4)−(−3u2)−(−3)
마이너스 플러스 규칙 적용−(−a)=a,−(a)=−a=−3u6−3u4+3u2+3
=10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3
10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3단순화하세요:−2u6+10u5−2u4+4u2+10u+4
10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3
집단적 용어=u6−3u6+10u5+u4−3u4+u2+3u2+10u+1+3
유사 요소 추가: u2+3u2=4u2=u6−3u6+10u5+u4−3u4+4u2+10u+1+3
유사 요소 추가: u4−3u4=−2u4=u6−3u6+10u5−2u4+4u2+10u+1+3
유사 요소 추가: u6−3u6=−2u6=−2u6+10u5−2u4+4u2+10u+1+3
숫자 추가: 1+3=4=−2u6+10u5−2u4+4u2+10u+4
=−2u6+10u5−2u4+4u2+10u+4
3u6+3u4−3u2−3−(3u6+3u4−3u2−3)간소화하다 :0
3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
유사 요소 추가: 3u6+3u4−3u2−3−(3u6+3u4−3u2−3)=0
=0
−2u6+10u5−2u4+4u2+10u+4=0
−2u6+10u5−2u4+4u2+10u+4=0
다음을 위한 하나의 솔루션 찾기 −2u6+10u5−2u4+4u2+10u+4=0 뉴턴-랩슨을 이용하여:u≈−0.45284…
−2u6+10u5−2u4+4u2+10u+4=0
뉴턴-랩슨 근사 정의
f(u)=−2u6+10u5−2u4+4u2+10u+4
f′(u)찾다 :−12u5+50u4−8u3+8u+10
dud(−2u6+10u5−2u4+4u2+10u+4)
합계/차이 규칙 적용: (f±g)′=f′±g′=−dud(2u6)+dud(10u5)−dud(2u4)+dud(4u2)+dud(10u)+dud(4)
dud(2u6)=12u5
dud(2u6)
정수를 빼라: (a⋅f)′=a⋅f′=2dud(u6)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2⋅6u6−1
단순화=12u5
dud(10u5)=50u4
dud(10u5)
정수를 빼라: (a⋅f)′=a⋅f′=10dud(u5)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=10⋅5u5−1
단순화=50u4
dud(2u4)=8u3
dud(2u4)
정수를 빼라: (a⋅f)′=a⋅f′=2dud(u4)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2⋅4u4−1
단순화=8u3
dud(4u2)=8u
dud(4u2)
정수를 빼라: (a⋅f)′=a⋅f′=4dud(u2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=4⋅2u2−1
단순화=8u
dud(10u)=10
dud(10u)
정수를 빼라: (a⋅f)′=a⋅f′=10dudu
공통 도함수 적용: dudu=1=10⋅1
단순화=10
dud(4)=0
dud(4)
상수의 도함수: dxd(a)=0=0
=−12u5+50u4−8u3+8u+10+0
단순화=−12u5+50u4−8u3+8u+10
렛 u0=0계산하다 un+1 까지 Δun+1<0.000001
u1=−0.4:Δu1=0.4
f(u0)=−2⋅06+10⋅05−2⋅04+4⋅02+10⋅0+4=4f′(u0)=−12⋅05+50⋅04−8⋅03+8⋅0+10=10u1=−0.4
Δu1=∣−0.4−0∣=0.4Δu1=0.4
u2=−0.45487…:Δu2=0.05487…
f(u1)=−2(−0.4)6+10(−0.4)5−2(−0.4)4+4(−0.4)2+10(−0.4)+4=0.478208f′(u1)=−12(−0.4)5+50(−0.4)4−8(−0.4)3+8(−0.4)+10=8.71488u2=−0.45487…
Δu2=∣−0.45487…−(−0.4)∣=0.05487…Δu2=0.05487…
u3=−0.45285…:Δu3=0.00201…
f(u2)=−2(−0.45487…)6+10(−0.45487…)5−2(−0.45487…)4+4(−0.45487…)2+10(−0.45487…)+4=−0.01916…f′(u2)=−12(−0.45487…)5+50(−0.45487…)4−8(−0.45487…)3+8(−0.45487…)+10=9.48821…u3=−0.45285…
Δu3=∣−0.45285…−(−0.45487…)∣=0.00201…Δu3=0.00201…
u4=−0.45284…:Δu4=3.93806E−6
f(u3)=−2(−0.45285…)6+10(−0.45285…)5−2(−0.45285…)4+4(−0.45285…)2+10(−0.45285…)+4=−0.00003…f′(u3)=−12(−0.45285…)5+50(−0.45285…)4−8(−0.45285…)3+8(−0.45285…)+10=9.45147…u4=−0.45284…
Δu4=∣−0.45284…−(−0.45285…)∣=3.93806E−6Δu4=3.93806E−6
u5=−0.45284…:Δu5=1.47831E−11
f(u4)=−2(−0.45284…)6+10(−0.45284…)5−2(−0.45284…)4+4(−0.45284…)2+10(−0.45284…)+4=−1.39721E−10f′(u4)=−12(−0.45284…)5+50(−0.45284…)4−8(−0.45284…)3+8(−0.45284…)+10=9.45140…u5=−0.45284…
Δu5=∣−0.45284…−(−0.45284…)∣=1.47831E−11Δu5=1.47831E−11
u≈−0.45284…
긴 나눗셈 적용:u+0.45284…−2u6+10u5−2u4+4u2+10u+4=−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…
−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…≈0
다음을 위한 하나의 솔루션 찾기 −2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=0 뉴턴-랩슨을 이용하여:u≈4.82043…
−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=0
뉴턴-랩슨 근사 정의
f(u)=−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…
f′(u)찾다 :−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…
dud(−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…)
합계/차이 규칙 적용: (f±g)′=f′±g′=−dud(2u5)+dud(10.90569…u4)−dud(6.93863…u3)+dud(3.14215…u2)+dud(2.57708…u)+dud(8.83297…)
dud(2u5)=10u4
dud(2u5)
정수를 빼라: (a⋅f)′=a⋅f′=2dud(u5)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2⋅5u5−1
단순화=10u4
dud(10.90569…u4)=43.62278…u3
dud(10.90569…u4)
정수를 빼라: (a⋅f)′=a⋅f′=10.90569…dud(u4)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=10.90569…⋅4u4−1
단순화=43.62278…u3
dud(6.93863…u3)=20.81589…u2
dud(6.93863…u3)
정수를 빼라: (a⋅f)′=a⋅f′=6.93863…dud(u3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=6.93863…⋅3u3−1
단순화=20.81589…u2
dud(3.14215…u2)=6.28430…u
dud(3.14215…u2)
정수를 빼라: (a⋅f)′=a⋅f′=3.14215…dud(u2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=3.14215…⋅2u2−1
단순화=6.28430…u
dud(2.57708…u)=2.57708…
dud(2.57708…u)
정수를 빼라: (a⋅f)′=a⋅f′=2.57708…dudu
공통 도함수 적용: dudu=1=2.57708…⋅1
단순화=2.57708…
dud(8.83297…)=0
dud(8.83297…)
상수의 도함수: dxd(a)=0=0
=−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…+0
단순화=−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…
렛 u0=−2계산하다 un+1 까지 Δun+1<0.000001
u1=−1.48484…:Δu1=0.51515…
f(u0)=−2(−2)5+10.90569…(−2)4−6.93863…(−2)3+3.14215…(−2)2+2.57708…(−2)+8.83297…=310.24761…f′(u0)=−10(−2)4+43.62278…(−2)3−20.81589…(−2)2+6.28430…(−2)+2.57708…=−602.23740…u1=−1.48484…
Δu1=∣−1.48484…−(−2)∣=0.51515…Δu1=0.51515…
u2=−1.06652…:Δu2=0.41831…
f(u1)=−2(−1.48484…)5+10.90569…(−1.48484…)4−6.93863…(−1.48484…)3+3.14215…(−1.48484…)2+2.57708…(−1.48484…)+8.83297…=102.09660…f′(u1)=−10(−1.48484…)4+43.62278…(−1.48484…)3−20.81589…(−1.48484…)2+6.28430…(−1.48484…)+2.57708…=−244.06592…u2=−1.06652…
Δu2=∣−1.06652…−(−1.48484…)∣=0.41831…Δu2=0.41831…
u3=−0.69341…:Δu3=0.37311…
f(u2)=−2(−1.06652…)5+10.90569…(−1.06652…)4−6.93863…(−1.06652…)3+3.14215…(−1.06652…)2+2.57708…(−1.06652…)+8.83297…=34.94642…f′(u2)=−10(−1.06652…)4+43.62278…(−1.06652…)3−20.81589…(−1.06652…)2+6.28430…(−1.06652…)+2.57708…=−93.66242…u3=−0.69341…
Δu3=∣−0.69341…−(−1.06652…)∣=0.37311…Δu3=0.37311…
u4=−0.21473…:Δu4=0.47868…
f(u3)=−2(−0.69341…)5+10.90569…(−0.69341…)4−6.93863…(−0.69341…)3+3.14215…(−0.69341…)2+2.57708…(−0.69341…)+8.83297…=13.71217…f′(u3)=−10(−0.69341…)4+43.62278…(−0.69341…)3−20.81589…(−0.69341…)2+6.28430…(−0.69341…)+2.57708…=−28.64562…u4=−0.21473…
Δu4=∣−0.21473…−(−0.69341…)∣=0.47868…Δu4=0.47868…
u5=45.73243…:Δu5=45.94716…
f(u4)=−2(−0.21473…)5+10.90569…(−0.21473…)4−6.93863…(−0.21473…)3+3.14215…(−0.21473…)2+2.57708…(−0.21473…)+8.83297…=8.51727…f′(u4)=−10(−0.21473…)4+43.62278…(−0.21473…)3−20.81589…(−0.21473…)2+6.28430…(−0.21473…)+2.57708…=−0.18537…u5=45.73243…
Δu5=∣45.73243…−(−0.21473…)∣=45.94716…Δu5=45.94716…
u6=36.82019…:Δu6=8.91223…
f(u5)=−2⋅45.73243…5+10.90569…⋅45.73243…4−6.93863…⋅45.73243…3+3.14215…⋅45.73243…2+2.57708…⋅45.73243…+8.83297…=−353037842.88944…f′(u5)=−10⋅45.73243…4+43.62278…⋅45.73243…3−20.81589…⋅45.73243…2+6.28430…⋅45.73243…+2.57708…=−39612709.25671…u6=36.82019…
Δu6=∣36.82019…−45.73243…∣=8.91223…Δu6=8.91223…
u7=29.69478…:Δu7=7.12541…
f(u6)=−2⋅36.82019…5+10.90569…⋅36.82019…4−6.93863…⋅36.82019…3+3.14215…⋅36.82019…2+2.57708…⋅36.82019…+8.83297…=−115648118.63564…f′(u6)=−10⋅36.82019…4+43.62278…⋅36.82019…3−20.81589…⋅36.82019…2+6.28430…⋅36.82019…+2.57708…=−16230376.60275…u7=29.69478…
Δu7=∣29.69478…−36.82019…∣=7.12541…Δu7=7.12541…
u8=24.00013…:Δu8=5.69464…
f(u7)=−2⋅29.69478…5+10.90569…⋅29.69478…4−6.93863…⋅29.69478…3+3.14215…⋅29.69478…2+2.57708…⋅29.69478…+8.83297…=−37876817.50021…f′(u7)=−10⋅29.69478…4+43.62278…⋅29.69478…3−20.81589…⋅29.69478…2+6.28430…⋅29.69478…+2.57708…=−6651300.86677…u8=24.00013…
Δu8=∣24.00013…−29.69478…∣=5.69464…Δu8=5.69464…
u9=19.45186…:Δu9=4.54827…
f(u8)=−2⋅24.00013…5+10.90569…⋅24.00013…4−6.93863…⋅24.00013…3+3.14215…⋅24.00013…2+2.57708…⋅24.00013…+8.83297…=−12401417.47322…f′(u8)=−10⋅24.00013…4+43.62278…⋅24.00013…3−20.81589…⋅24.00013…2+6.28430…⋅24.00013…+2.57708…=−2726621.64422…u9=19.45186…
Δu9=∣19.45186…−24.00013…∣=4.54827…Δu9=4.54827…
u10=15.82312…:Δu10=3.62873…
f(u9)=−2⋅19.45186…5+10.90569…⋅19.45186…4−6.93863…⋅19.45186…3+3.14215…⋅19.45186…2+2.57708…⋅19.45186…+8.83297…=−4058236.53789…f′(u9)=−10⋅19.45186…4+43.62278…⋅19.45186…3−20.81589…⋅19.45186…2+6.28430…⋅19.45186…+2.57708…=−1118360.52689…u10=15.82312…
Δu10=∣15.82312…−19.45186…∣=3.62873…Δu10=3.62873…
u11=12.93345…:Δu11=2.88967…
f(u10)=−2⋅15.82312…5+10.90569…⋅15.82312…4−6.93863…⋅15.82312…3+3.14215…⋅15.82312…2+2.57708…⋅15.82312…+8.83297…=−1326791.95496…f′(u10)=−10⋅15.82312…4+43.62278…⋅15.82312…3−20.81589…⋅15.82312…2+6.28430…⋅15.82312…+2.57708…=−459149.56948…u11=12.93345…
Δu11=∣12.93345…−15.82312…∣=2.88967…Δu11=2.88967…
u12=10.64002…:Δu12=2.29343…
f(u11)=−2⋅12.93345…5+10.90569…⋅12.93345…4−6.93863…⋅12.93345…3+3.14215…⋅12.93345…2+2.57708…⋅12.93345…+8.83297…=−433068.72392…f′(u11)=−10⋅12.93345…4+43.62278…⋅12.93345…3−20.81589…⋅12.93345…2+6.28430…⋅12.93345…+2.57708…=−188829.97467…u12=10.64002…
Δu12=∣10.64002…−12.93345…∣=2.29343…Δu12=2.29343…
u13=8.83106…:Δu13=1.80895…
f(u12)=−2⋅10.64002…5+10.90569…⋅10.64002…4−6.93863…⋅10.64002…3+3.14215…⋅10.64002…2+2.57708…⋅10.64002…+8.83297…=−140929.23683…f′(u12)=−10⋅10.64002…4+43.62278…⋅10.64002…3−20.81589…⋅10.64002…2+6.28430…⋅10.64002…+2.57708…=−77906.25228…u13=8.83106…
Δu13=∣8.83106…−10.64002…∣=1.80895…Δu13=1.80895…
u14=7.42130…:Δu14=1.40976…
f(u13)=−2⋅8.83106…5+10.90569…⋅8.83106…4−6.93863…⋅8.83106…3+3.14215…⋅8.83106…2+2.57708…⋅8.83106…+8.83297…=−45595.29435…f′(u13)=−10⋅8.83106…4+43.62278…⋅8.83106…3−20.81589…⋅8.83106…2+6.28430…⋅8.83106…+2.57708…=−32342.49741…u14=7.42130…
Δu14=∣7.42130…−8.83106…∣=1.40976…Δu14=1.40976…
u15=6.34950…:Δu15=1.07179…
f(u14)=−2⋅7.42130…5+10.90569…⋅7.42130…4−6.93863…⋅7.42130…3+3.14215…⋅7.42130…2+2.57708…⋅7.42130…+8.83297…=−14576.98569…f′(u14)=−10⋅7.42130…4+43.62278…⋅7.42130…3−20.81589…⋅7.42130…2+6.28430…⋅7.42130…+2.57708…=−13600.48355…u15=6.34950…
Δu15=∣6.34950…−7.42130…∣=1.07179…Δu15=1.07179…
u16=5.57803…:Δu16=0.77146…
f(u15)=−2⋅6.34950…5+10.90569…⋅6.34950…4−6.93863…⋅6.34950…3+3.14215…⋅6.34950…2+2.57708…⋅6.34950…+8.83297…=−4539.15945…f′(u15)=−10⋅6.34950…4+43.62278…⋅6.34950…3−20.81589…⋅6.34950…2+6.28430…⋅6.34950…+2.57708…=−5883.78460…u16=5.57803…
Δu16=∣5.57803…−6.34950…∣=0.77146…Δu16=0.77146…
u17=5.09067…:Δu17=0.48736…
f(u16)=−2⋅5.57803…5+10.90569…⋅5.57803…4−6.93863…⋅5.57803…3+3.14215…⋅5.57803…2+2.57708…⋅5.57803…+8.83297…=−1325.66062…f′(u16)=−10⋅5.57803…4+43.62278…⋅5.57803…3−20.81589…⋅5.57803…2+6.28430…⋅5.57803…+2.57708…=−2720.07531…u17=5.09067…
Δu17=∣5.09067…−5.57803…∣=0.48736…Δu17=0.48736…
u18=4.86858…:Δu18=0.22208…
f(u17)=−2⋅5.09067…5+10.90569…⋅5.09067…4−6.93863…⋅5.09067…3+3.14215…⋅5.09067…2+2.57708…⋅5.09067…+8.83297…=−325.52900…f′(u17)=−10⋅5.09067…4+43.62278…⋅5.09067…3−20.81589…⋅5.09067…2+6.28430…⋅5.09067…+2.57708…=−1465.80116…u18=4.86858…
Δu18=∣4.86858…−5.09067…∣=0.22208…Δu18=0.22208…
u19=4.82230…:Δu19=0.04628…
f(u18)=−2⋅4.86858…5+10.90569…⋅4.86858…4−6.93863…⋅4.86858…3+3.14215…⋅4.86858…2+2.57708…⋅4.86858…+8.83297…=−48.34478…f′(u18)=−10⋅4.86858…4+43.62278…⋅4.86858…3−20.81589…⋅4.86858…2+6.28430…⋅4.86858…+2.57708…=−1044.51538…u19=4.82230…
Δu19=∣4.82230…−4.86858…∣=0.04628…Δu19=0.04628…
u20=4.82043…:Δu20=0.00186…
f(u19)=−2⋅4.82230…5+10.90569…⋅4.82230…4−6.93863…⋅4.82230…3+3.14215…⋅4.82230…2+2.57708…⋅4.82230…+8.83297…=−1.80563…f′(u19)=−10⋅4.82230…4+43.62278…⋅4.82230…3−20.81589…⋅4.82230…2+6.28430…⋅4.82230…+2.57708…=−967.05976…u20=4.82043…
Δu20=∣4.82043…−4.82230…∣=0.00186…Δu20=0.00186…
u21=4.82043…:Δu21=2.95792E−6
f(u20)=−2⋅4.82043…5+10.90569…⋅4.82043…4−6.93863…⋅4.82043…3+3.14215…⋅4.82043…2+2.57708…⋅4.82043…+8.83297…=−0.00285…f′(u20)=−10⋅4.82043…4+43.62278…⋅4.82043…3−20.81589…⋅4.82043…2+6.28430…⋅4.82043…+2.57708…=−964.00633…u21=4.82043…
Δu21=∣4.82043…−4.82043…∣=2.95792E−6Δu21=2.95792E−6
u22=4.82043…:Δu22=7.4149E−12
f(u21)=−2⋅4.82043…5+10.90569…⋅4.82043…4−6.93863…⋅4.82043…3+3.14215…⋅4.82043…2+2.57708…⋅4.82043…+8.83297…=−7.14797E−9f′(u21)=−10⋅4.82043…4+43.62278…⋅4.82043…3−20.81589…⋅4.82043…2+6.28430…⋅4.82043…+2.57708…=−964.00149…u22=4.82043…
Δu22=∣4.82043…−4.82043…∣=7.4149E−12Δu22=7.4149E−12
u≈4.82043…
긴 나눗셈 적용:u−4.82043…−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…
−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…≈0
다음을 위한 하나의 솔루션 찾기 −2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…=0 뉴턴-랩슨을 이용하여:솔루션 없음 u∈R
−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…=0
뉴턴-랩슨 근사 정의
f(u)=−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…
f′(u)찾다 :−8u3+3.79448…u2−1.68320…u−0.91474…
dud(−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…)
합계/차이 규칙 적용: (f±g)′=f′±g′=−dud(2u4)+dud(1.26482…u3)−dud(0.84160…u2)−dud(0.91474…u)−dud(1.83240…)
dud(2u4)=8u3
dud(2u4)
정수를 빼라: (a⋅f)′=a⋅f′=2dud(u4)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2⋅4u4−1
단순화=8u3
dud(1.26482…u3)=3.79448…u2
dud(1.26482…u3)
정수를 빼라: (a⋅f)′=a⋅f′=1.26482…dud(u3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=1.26482…⋅3u3−1
단순화=3.79448…u2
dud(0.84160…u2)=1.68320…u
dud(0.84160…u2)
정수를 빼라: (a⋅f)′=a⋅f′=0.84160…dud(u2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=0.84160…⋅2u2−1
단순화=1.68320…u
dud(0.91474…u)=0.91474…
dud(0.91474…u)
정수를 빼라: (a⋅f)′=a⋅f′=0.91474…dudu
공통 도함수 적용: dudu=1=0.91474…⋅1
단순화=0.91474…
dud(1.83240…)=0
dud(1.83240…)
상수의 도함수: dxd(a)=0=0
=−8u3+3.79448…u2−1.68320…u−0.91474…−0
단순화=−8u3+3.79448…u2−1.68320…u−0.91474…
렛 u0=−2계산하다 un+1 까지 Δun+1<0.000001
u1=−1.44275…:Δu1=0.55724…
f(u0)=−2(−2)4+1.26482…(−2)3−0.84160…(−2)2−0.91474…(−2)−1.83240…=−45.48795…f′(u0)=−8(−2)3+3.79448…(−2)2−1.68320…(−2)−0.91474…=81.62962…u1=−1.44275…
Δu1=∣−1.44275…−(−2)∣=0.55724…Δu1=0.55724…
u2=−1.00226…:Δu2=0.44048…
f(u1)=−2(−1.44275…)4+1.26482…(−1.44275…)3−0.84160…(−1.44275…)2−0.91474…(−1.44275…)−1.83240…=−14.72848…f′(u1)=−8(−1.44275…)3+3.79448…(−1.44275…)2−1.68320…(−1.44275…)−0.91474…=33.43713…u2=−1.00226…
Δu2=∣−1.00226…−(−1.44275…)∣=0.44048…Δu2=0.44048…
u3=−0.60248…:Δu3=0.39978…
f(u2)=−2(−1.00226…)4+1.26482…(−1.00226…)3−0.84160…(−1.00226…)2−0.91474…(−1.00226…)−1.83240…=−5.05267…f′(u2)=−8(−1.00226…)3+3.79448…(−1.00226…)2−1.68320…(−1.00226…)−0.91474…=12.63858…u3=−0.60248…
Δu3=∣−0.60248…−(−1.00226…)∣=0.39978…Δu3=0.39978…
u4=0.05675…:Δu4=0.65924…
f(u3)=−2(−0.60248…)4+1.26482…(−0.60248…)3−0.84160…(−0.60248…)2−0.91474…(−0.60248…)−1.83240…=−2.12691…f′(u3)=−8(−0.60248…)3+3.79448…(−0.60248…)2−1.68320…(−0.60248…)−0.91474…=3.22630…u4=0.05675…
Δu4=∣0.05675…−(−0.60248…)∣=0.65924…Δu4=0.65924…
u5=−1.83097…:Δu5=1.88772…
f(u4)=−2⋅0.05675…4+1.26482…⋅0.05675…3−0.84160…⋅0.05675…2−0.91474…⋅0.05675…−1.83240…=−1.88681…f′(u4)=−8⋅0.05675…3+3.79448…⋅0.05675…2−1.68320…⋅0.05675…−0.91474…=−0.99951…u5=−1.83097…
Δu5=∣−1.83097…−0.05675…∣=1.88772…Δu5=1.88772…
u6=−1.31185…:Δu6=0.51912…
f(u5)=−2(−1.83097…)4+1.26482…(−1.83097…)3−0.84160…(−1.83097…)2−0.91474…(−1.83097…)−1.83240…=−33.22099…f′(u5)=−8(−1.83097…)3+3.79448…(−1.83097…)2−1.68320…(−1.83097…)−0.91474…=63.99442…u6=−1.31185…
Δu6=∣−1.31185…−(−1.83097…)∣=0.51912…Δu6=0.51912…
u7=−0.89231…:Δu7=0.41954…
f(u6)=−2(−1.31185…)4+1.26482…(−1.31185…)3−0.84160…(−1.31185…)2−0.91474…(−1.31185…)−1.83240…=−10.85966…f′(u6)=−8(−1.31185…)3+3.79448…(−1.31185…)2−1.68320…(−1.31185…)−0.91474…=25.88464…u7=−0.89231…
Δu7=∣−0.89231…−(−1.31185…)∣=0.41954…Δu7=0.41954…
u8=−0.47768…:Δu8=0.41462…
f(u7)=−2(−0.89231…)4+1.26482…(−0.89231…)3−0.84160…(−0.89231…)2−0.91474…(−0.89231…)−1.83240…=−3.85282…f′(u7)=−8(−0.89231…)3+3.79448…(−0.89231…)2−1.68320…(−0.89231…)−0.91474…=9.29225…u8=−0.47768…
Δu8=∣−0.47768…−(−0.89231…)∣=0.41462…Δu8=0.41462…
u9=0.64668…:Δu9=1.12436…
f(u8)=−2(−0.47768…)4+1.26482…(−0.47768…)3−0.84160…(−0.47768…)2−0.91474…(−0.47768…)−1.83240…=−1.82947…f′(u8)=−8(−0.47768…)3+3.79448…(−0.47768…)2−1.68320…(−0.47768…)−0.91474…=1.62711…u9=0.64668…
Δu9=∣0.64668…−(−0.47768…)∣=1.12436…Δu9=1.12436…
u10=−0.43226…:Δu10=1.07894…
f(u9)=−2⋅0.64668…4+1.26482…⋅0.64668…3−0.84160…⋅0.64668…2−0.91474…⋅0.64668…−1.83240…=−2.78363…f′(u9)=−8⋅0.64668…3+3.79448…⋅0.64668…2−1.68320…⋅0.64668…−0.91474…=−2.57995…u10=−0.43226…
Δu10=∣−0.43226…−0.64668…∣=1.07894…Δu10=1.07894…
u11=1.07993…:Δu11=1.51219…
f(u10)=−2(−0.43226…)4+1.26482…(−0.43226…)3−0.84160…(−0.43226…)2−0.91474…(−0.43226…)−1.83240…=−1.76622…f′(u10)=−8(−0.43226…)3+3.79448…(−0.43226…)2−1.68320…(−0.43226…)−0.91474…=1.16798…u11=1.07993…
Δu11=∣1.07993…−(−0.43226…)∣=1.51219…Δu11=1.51219…
해결 방법을 찾을 수 없습니다
해결책은u≈−0.45284…,u≈4.82043…
u≈−0.45284…,u≈4.82043…
솔루션 확인
정의되지 않은 (특이점) 점 찾기:u=0
의 분모를 취하라 3u2+u−2u2−u−2 그리고 0과 비교한다
u2=0해결 :u=0
u2=0
규칙 적용 xn=0⇒x=0
u=0
의 분모를 취하라 5u+u−12+1 그리고 0과 비교한다
u=0
다음 지점은 정의되지 않았습니다u=0
정의되지 않은 점을 솔루션과 결합:
u≈−0.45284…,u≈4.82043…
u≈−0.45284…,u≈4.82043…
다시 대체 u=eθ,을 해결하다 θ
eθ=−0.45284…해결 :솔루션 없음 θ∈R
eθ=−0.45284…
af(θ) 에 대해 0 또는 음수일 수 없습니다 θ∈R솔루션없음θ∈R
eθ=4.82043…해결 :θ=ln(4.82043…)
eθ=4.82043…
지수 규칙 적용
eθ=4.82043…
만약에 f(x)=g(x), 그렇다면 ln(f(x))=ln(g(x))ln(eθ)=ln(4.82043…)
로그 규칙 적용: ln(ea)=aln(eθ)=θθ=ln(4.82043…)
θ=ln(4.82043…)
θ=ln(4.82043…)
θ=ln(4.82043…)