Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ)=(sqrt(2))/2 csc(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ)=22​​csc(θ)

Solution

θ=4π​+2πn,θ=47π​+2πn
+1
Degrees
θ=45∘+360∘n,θ=315∘+360∘n
Solution steps
tan(θ)=22​​csc(θ)
Subtract 22​​csc(θ) from both sidestan(θ)−2​csc(θ)​=0
Simplify tan(θ)−2​csc(θ)​:2​2​tan(θ)−csc(θ)​
tan(θ)−2​csc(θ)​
Convert element to fraction: tan(θ)=2​tan(θ)2​​=2​tan(θ)2​​−2​csc(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​tan(θ)2​−csc(θ)​
2​2​tan(θ)−csc(θ)​=0
g(x)f(x)​=0⇒f(x)=02​tan(θ)−csc(θ)=0
Express with sin, cos2​cos(θ)sin(θ)​−sin(θ)1​=0
Simplify 2​cos(θ)sin(θ)​−sin(θ)1​:cos(θ)sin(θ)2​sin2(θ)−cos(θ)​
2​cos(θ)sin(θ)​−sin(θ)1​
Multiply 2​cos(θ)sin(θ)​:cos(θ)2​sin(θ)​
2​cos(θ)sin(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)sin(θ)2​​
=cos(θ)2​sin(θ)​−sin(θ)1​
Least Common Multiplier of cos(θ),sin(θ):cos(θ)sin(θ)
cos(θ),sin(θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(θ) or sin(θ)=cos(θ)sin(θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(θ)sin(θ)
For cos(θ)sin(θ)2​​:multiply the denominator and numerator by sin(θ)cos(θ)sin(θ)2​​=cos(θ)sin(θ)sin(θ)2​sin(θ)​=cos(θ)sin(θ)2​sin2(θ)​
For sin(θ)1​:multiply the denominator and numerator by cos(θ)sin(θ)1​=sin(θ)cos(θ)1⋅cos(θ)​=cos(θ)sin(θ)cos(θ)​
=cos(θ)sin(θ)2​sin2(θ)​−cos(θ)sin(θ)cos(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(θ)sin(θ)2​sin2(θ)−cos(θ)​
cos(θ)sin(θ)2​sin2(θ)−cos(θ)​=0
g(x)f(x)​=0⇒f(x)=02​sin2(θ)−cos(θ)=0
Add cos(θ) to both sides2​sin2(θ)=cos(θ)
Square both sides(2​sin2(θ))2=cos2(θ)
Subtract cos2(θ) from both sides2sin4(θ)−cos2(θ)=0
Factor 2sin4(θ)−cos2(θ):(2​sin2(θ)+cos(θ))(2​sin2(θ)−cos(θ))
2sin4(θ)−cos2(θ)
Rewrite 2sin4(θ)−cos2(θ) as (2​sin2(θ))2−cos2(θ)
2sin4(θ)−cos2(θ)
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin4(θ)−cos2(θ)
Apply exponent rule: abc=(ab)csin4(θ)=(sin2(θ))2=(2​)2(sin2(θ))2−cos2(θ)
Apply exponent rule: ambm=(ab)m(2​)2(sin2(θ))2=(2​sin2(θ))2=(2​sin2(θ))2−cos2(θ)
=(2​sin2(θ))2−cos2(θ)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin2(θ))2−cos2(θ)=(2​sin2(θ)+cos(θ))(2​sin2(θ)−cos(θ))=(2​sin2(θ)+cos(θ))(2​sin2(θ)−cos(θ))
(2​sin2(θ)+cos(θ))(2​sin2(θ)−cos(θ))=0
Solving each part separately2​sin2(θ)+cos(θ)=0or2​sin2(θ)−cos(θ)=0
2​sin2(θ)+cos(θ)=0:θ=43π​+2πn,θ=45π​+2πn
2​sin2(θ)+cos(θ)=0
Rewrite using trig identities
cos(θ)+sin2(θ)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos(θ)+(1−cos2(θ))2​
cos(θ)+(1−cos2(θ))2​=0
Solve by substitution
cos(θ)+(1−cos2(θ))2​=0
Let: cos(θ)=uu+(1−u2)2​=0
u+(1−u2)2​=0:u=−22​​,u=2​
u+(1−u2)2​=0
Expand u+(1−u2)2​:u+2​−2​u2
u+(1−u2)2​
=u+2​(1−u2)
Expand 2​(1−u2):2​−2​u2
2​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=u2=2​⋅1−2​u2
=1⋅2​−2​u2
Multiply: 1⋅2​=2​=2​−2​u2
=u+2​−2​u2
u+2​−2​u2=0
Write in the standard form ax2+bx+c=0−2​u2+u+2​=0
Solve with the quadratic formula
−2​u2+u+2​=0
Quadratic Equation Formula:
For a=−2​,b=1,c=2​u1,2​=2(−2​)−1±12−4(−2​)2​​​
u1,2​=2(−2​)−1±12−4(−2​)2​​​
12−4(−2​)2​​=3
12−4(−2​)2​​
Apply rule 1a=112=1=1−42​(−2​)​
Apply rule −(−a)=a=1+42​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2(−2​)−1±3​
Separate the solutionsu1​=2(−2​)−1+3​,u2​=2(−2​)−1−3​
u=2(−2​)−1+3​:−22​​
2(−2​)−1+3​
Remove parentheses: (−a)=−a=−22​−1+3​
Add/Subtract the numbers: −1+3=2=−22​2​
Apply the fraction rule: −ba​=−ba​=−22​2​
Divide the numbers: 22​=1=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=2(−2​)−1−3​:2​
2(−2​)−1−3​
Remove parentheses: (−a)=−a=−22​−1−3​
Subtract the numbers: −1−3=−4=−22​−4​
Apply the fraction rule: −b−a​=ba​=22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=2​
The solutions to the quadratic equation are:u=−22​​,u=2​
Substitute back u=cos(θ)cos(θ)=−22​​,cos(θ)=2​
cos(θ)=−22​​,cos(θ)=2​
cos(θ)=−22​​:θ=43π​+2πn,θ=45π​+2πn
cos(θ)=−22​​
General solutions for cos(θ)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=43π​+2πn,θ=45π​+2πn
θ=43π​+2πn,θ=45π​+2πn
cos(θ)=2​:No Solution
cos(θ)=2​
−1≤cos(x)≤1NoSolution
Combine all the solutionsθ=43π​+2πn,θ=45π​+2πn
2​sin2(θ)−cos(θ)=0:θ=4π​+2πn,θ=47π​+2πn
2​sin2(θ)−cos(θ)=0
Rewrite using trig identities
−cos(θ)+sin2(θ)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos(θ)+(1−cos2(θ))2​
−cos(θ)+(1−cos2(θ))2​=0
Solve by substitution
−cos(θ)+(1−cos2(θ))2​=0
Let: cos(θ)=u−u+(1−u2)2​=0
−u+(1−u2)2​=0:u=−2​,u=22​​
−u+(1−u2)2​=0
Expand −u+(1−u2)2​:−u+2​−2​u2
−u+(1−u2)2​
=−u+2​(1−u2)
Expand 2​(1−u2):2​−2​u2
2​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2​,b=1,c=u2=2​⋅1−2​u2
=1⋅2​−2​u2
Multiply: 1⋅2​=2​=2​−2​u2
=−u+2​−2​u2
−u+2​−2​u2=0
Write in the standard form ax2+bx+c=0−2​u2−u+2​=0
Solve with the quadratic formula
−2​u2−u+2​=0
Quadratic Equation Formula:
For a=−2​,b=−1,c=2​u1,2​=2(−2​)−(−1)±(−1)2−4(−2​)2​​​
u1,2​=2(−2​)−(−1)±(−1)2−4(−2​)2​​​
(−1)2−4(−2​)2​​=3
(−1)2−4(−2​)2​​
Apply rule −(−a)=a=(−1)2+42​2​​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2(−2​)−(−1)±3​
Separate the solutionsu1​=2(−2​)−(−1)+3​,u2​=2(−2​)−(−1)−3​
u=2(−2​)−(−1)+3​:−2​
2(−2​)−(−1)+3​
Remove parentheses: (−a)=−a,−(−a)=a=−22​1+3​
Add the numbers: 1+3=4=−22​4​
Apply the fraction rule: −ba​=−ba​=−22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=−2​
u=2(−2​)−(−1)−3​:22​​
2(−2​)−(−1)−3​
Remove parentheses: (−a)=−a,−(−a)=a=−22​1−3​
Subtract the numbers: 1−3=−2=−22​−2​
Apply the fraction rule: −b−a​=ba​=22​2​
Divide the numbers: 22​=1=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
The solutions to the quadratic equation are:u=−2​,u=22​​
Substitute back u=cos(θ)cos(θ)=−2​,cos(θ)=22​​
cos(θ)=−2​,cos(θ)=22​​
cos(θ)=−2​:No Solution
cos(θ)=−2​
−1≤cos(x)≤1NoSolution
cos(θ)=22​​:θ=4π​+2πn,θ=47π​+2πn
cos(θ)=22​​
General solutions for cos(θ)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=4π​+2πn,θ=47π​+2πn
θ=4π​+2πn,θ=47π​+2πn
Combine all the solutionsθ=4π​+2πn,θ=47π​+2πn
Combine all the solutionsθ=43π​+2πn,θ=45π​+2πn,θ=4π​+2πn,θ=47π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into tan(θ)=22​​csc(θ)
Remove the ones that don't agree with the equation.
Check the solution 43π​+2πn:False
43π​+2πn
Plug in n=143π​+2π1
For tan(θ)=22​​csc(θ)plug inθ=43π​+2π1tan(43π​+2π1)=22​​csc(43π​+2π1)
Refine−1=1
⇒False
Check the solution 45π​+2πn:False
45π​+2πn
Plug in n=145π​+2π1
For tan(θ)=22​​csc(θ)plug inθ=45π​+2π1tan(45π​+2π1)=22​​csc(45π​+2π1)
Refine1=−1
⇒False
Check the solution 4π​+2πn:True
4π​+2πn
Plug in n=14π​+2π1
For tan(θ)=22​​csc(θ)plug inθ=4π​+2π1tan(4π​+2π1)=22​​csc(4π​+2π1)
Refine1=1
⇒True
Check the solution 47π​+2πn:True
47π​+2πn
Plug in n=147π​+2π1
For tan(θ)=22​​csc(θ)plug inθ=47π​+2π1tan(47π​+2π1)=22​​csc(47π​+2π1)
Refine−1=−1
⇒True
θ=4π​+2πn,θ=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(x)cos(x)= 1/2tan(θ)=0.75cos(6x)=1csc^2(θ)-2csc(θ)=0cos(θ)=-7/25

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(θ)=(sqrt(2))/2 csc(θ) ?

    The general solution for tan(θ)=(sqrt(2))/2 csc(θ) is θ= pi/4+2pin,θ=(7pi)/4+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024