Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(cos^2(x))= 2/(3-3sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)1​=3−3sin(x)2​

Solution

x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n
Solution steps
cos2(x)1​=3−3sin(x)2​
Subtract 3−3sin(x)2​ from both sidescos2(x)1​−3−3sin(x)2​=0
Simplify cos2(x)1​−3−3sin(x)2​:−3cos2(x)(sin(x)−1)−3(sin(x)−1)−2cos2(x)​
cos2(x)1​−3−3sin(x)2​
Factor 3−3sin(x):−3(sin(x)−1)
3−3sin(x)
Factor out common term −3=−3(sin(x)−1)
=cos2(x)1​−−3(sin(x)−1)2​
Least Common Multiplier of cos2(x),−3(sin(x)−1):−3cos2(x)(sin(x)−1)
cos2(x),−3(sin(x)−1)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos2(x) or −3(sin(x)−1)=−3cos2(x)(sin(x)−1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM −3cos2(x)(sin(x)−1)
For cos2(x)1​:multiply the denominator and numerator by −3(sin(x)−1)cos2(x)1​=cos2(x)(−3(sin(x)−1))1⋅(−3(sin(x)−1))​=−3cos2(x)(sin(x)−1)−3(sin(x)−1)​
For −3(sin(x)−1)2​:multiply the denominator and numerator by cos2(x)−3(sin(x)−1)2​=(−3(sin(x)−1))cos2(x)2cos2(x)​=−3cos2(x)(sin(x)−1)2cos2(x)​
=−3cos2(x)(sin(x)−1)−3(sin(x)−1)​−−3cos2(x)(sin(x)−1)2cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=−3cos2(x)(sin(x)−1)−3(sin(x)−1)−2cos2(x)​
Apply the fraction rule: −ba​=−ba​=−3cos2(x)(sin(x)−1)−3(sin(x)−1)−2cos2(x)​
−3cos2(x)(sin(x)−1)−3(sin(x)−1)−2cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0−(−3(sin(x)−1)−2cos2(x))=0
Rewrite using trig identities
−(−(−1+sin(x))⋅3−2cos2(x))
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(−(−1+sin(x))⋅3−2(1−sin2(x)))
Simplify −(−(−1+sin(x))⋅3−2(1−sin2(x))):−2sin2(x)+3sin(x)−1
−(−(−1+sin(x))⋅3−2(1−sin2(x)))
Expand −(−1+sin(x))⋅3−2(1−sin2(x)):2sin2(x)−3sin(x)+1
−(−1+sin(x))⋅3−2(1−sin2(x))
=−3(−1+sin(x))−2(1−sin2(x))
Expand −3(−1+sin(x)):3−3sin(x)
−3(−1+sin(x))
Apply the distributive law: a(b+c)=ab+aca=−3,b=−1,c=sin(x)=−3(−1)+(−3)sin(x)
Apply minus-plus rules−(−a)=a,+(−a)=−a=3⋅1−3sin(x)
Multiply the numbers: 3⋅1=3=3−3sin(x)
=3−3sin(x)−2(1−sin2(x))
Expand −2(1−sin2(x)):−2+2sin2(x)
−2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=sin2(x)=−2⋅1−(−2)sin2(x)
Apply minus-plus rules−(−a)=a=−2⋅1+2sin2(x)
Multiply the numbers: 2⋅1=2=−2+2sin2(x)
=3−3sin(x)−2+2sin2(x)
Simplify 3−3sin(x)−2+2sin2(x):2sin2(x)−3sin(x)+1
3−3sin(x)−2+2sin2(x)
Group like terms=−3sin(x)+2sin2(x)+3−2
Add/Subtract the numbers: 3−2=1=2sin2(x)−3sin(x)+1
=2sin2(x)−3sin(x)+1
=−(2sin2(x)−3sin(x)+1)
Distribute parentheses=−(2sin2(x))−(−3sin(x))−(1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2sin2(x)+3sin(x)−1
=−2sin2(x)+3sin(x)−1
−1−2sin2(x)+3sin(x)=0
Solve by substitution
−1−2sin2(x)+3sin(x)=0
Let: sin(x)=u−1−2u2+3u=0
−1−2u2+3u=0:u=21​,u=1
−1−2u2+3u=0
Write in the standard form ax2+bx+c=0−2u2+3u−1=0
Solve with the quadratic formula
−2u2+3u−1=0
Quadratic Equation Formula:
For a=−2,b=3,c=−1u1,2​=2(−2)−3±32−4(−2)(−1)​​
u1,2​=2(−2)−3±32−4(−2)(−1)​​
32−4(−2)(−1)​=1
32−4(−2)(−1)​
Apply rule −(−a)=a=32−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=2(−2)−3±1​
Separate the solutionsu1​=2(−2)−3+1​,u2​=2(−2)−3−1​
u=2(−2)−3+1​:21​
2(−2)−3+1​
Remove parentheses: (−a)=−a=−2⋅2−3+1​
Add/Subtract the numbers: −3+1=−2=−2⋅2−2​
Multiply the numbers: 2⋅2=4=−4−2​
Apply the fraction rule: −b−a​=ba​=42​
Cancel the common factor: 2=21​
u=2(−2)−3−1​:1
2(−2)−3−1​
Remove parentheses: (−a)=−a=−2⋅2−3−1​
Subtract the numbers: −3−1=−4=−2⋅2−4​
Multiply the numbers: 2⋅2=4=−4−4​
Apply the fraction rule: −b−a​=ba​=44​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=21​,u=1
Substitute back u=sin(x)sin(x)=21​,sin(x)=1
sin(x)=21​,sin(x)=1
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=2π​+2πn
Since the equation is undefined for:2π​+2πnx=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(4x)=-1cos(x/2)=-1/2cos(x)=sec(x)cos^2(x)=22sin^2(x)=3cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/(cos^2(x))= 2/(3-3sin(x)) ?

    The general solution for 1/(cos^2(x))= 2/(3-3sin(x)) is x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024