Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

tan(18)

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

tan(18∘)

Solution

55−25​​​
+1
Décimale
0.32491…
étapes des solutions
tan(18∘)
Récrire en utilisant des identités trigonométriques:1+cos(36∘)1−cos(36∘)​​
tan(18∘)
Ecrire tan(18∘)comme tan(236∘​)=tan(236∘​)
En utilisant l'identité de demi-angle:tan(2θ​)=1+cos(θ)1−cos(θ)​​
Récrire en utilisant des identités trigonométriques:tan2(θ)=1+cos(2θ)1−cos(2θ)​
Utiliser les identités suivantes
tan(θ)=cos(θ)sin(θ)​
Mettre les deux côtés au carrétan2(θ)=cos2(θ)sin2(θ)​
Récrire en utilisant des identités trigonométriques:sin2(θ)=21−cos(2θ)​
Utiliser l'identité d'angle doublecos(2θ)=1−2sin2(θ)
Transposer les termes des côtés2sin2(θ)−1=−cos(2θ)
Ajouter 1 aux deux côtés2sin2(θ)=1−cos(2θ)
Diviser les deux côtés par 2sin2(θ)=21−cos(2θ)​
Récrire en utilisant des identités trigonométriques:cos2(θ)=21+cos(2θ)​
Utiliser l'identité d'angle doublecos(2θ)=2cos2(θ)−1
Transposer les termes des côtés2cos2(θ)−1=cos(2θ)
Ajouter 1 aux deux côtés2sin2(θ)=1+cos(2θ)
Diviser les deux côtés par 2cos2(θ)=21+cos(2θ)​
tan2(θ)=21+cos(2θ)​21−cos(2θ)​​
Simplifiertan2(θ)=1+cos(2θ)1−cos(2θ)​
Remplacer θ par 2θ​tan2(2θ​)=1+cos(2⋅2θ​)1−cos(2⋅2θ​)​
Simplifiertan2(2θ​)=1+cos(θ)1−cos(θ)​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘]​quadrantIII​tanpositivenegative​​
tan(2θ​)=1+cos(θ)1−cos(θ)​​
=1+cos(36∘)1−cos(36∘)​​
=1+cos(36∘)1−cos(36∘)​​
Récrire en utilisant des identités trigonométriques:cos(36∘)=45​+1​
cos(36∘)
Démontrer que : cos(36∘)−sin(18∘)=21​
Utiliser le produit suivant pour additionner une identité: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Démontrer que : 2cos(36∘)sin(18∘)=21​
Utiliser l'identité d'angle double: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Diviser les deux côtés par sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Utiliser les identités suivantes: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Diviser les deux côtés par cos(18∘)1=4sin(18∘)cos(36∘)
Diviser les deux côtés par 221​=2sin(18∘)cos(36∘)
Remplacer 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Démontrer que : cos(36∘)+sin(18∘)=45​​
Utiliser la règle de factorisation : a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Redéfinir(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Démontrer que : 2cos(36∘)sin(18∘)=21​
Utiliser l'identité d'angle double: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Diviser les deux côtés par sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Utiliser les identités suivantes: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Diviser les deux côtés par cos(18∘)1=4sin(18∘)cos(36∘)
Diviser les deux côtés par 221​=2sin(18∘)cos(36∘)
Remplacer 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Remplacer cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Redéfinir(cos(36∘)+sin(18∘))2−41​=1
Ajouter 41​ aux deux côtés(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Redéfinir(cos(36∘)+sin(18∘))2=45​
Prendre la racine carrée des deux côtéscos(36∘)+sin(18∘)=±45​​
cos(36∘)ne peut pas être négativesin(18∘)ne peut pas être négativecos(36∘)+sin(18∘)=45​​
Ajouter les équations suivantescos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Redéfinircos(36∘)=45​+1​
=45​+1​
=1+45​+1​1−45​+1​​​
Simplifier 1+45​+1​1−45​+1​​​:55−25​​​
1+45​+1​1−45​+1​​​
1+45​+1​1−45​+1​​=5+5​3−5​​
1+45​+1​1−45​+1​​
Relier 1+45​+1​:45+5​​
1+45​+1​
Convertir un élément en fraction: 1=41⋅4​=41⋅4​+45​+1​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=41⋅4+5​+1​
1⋅4+5​+1=5+5​
1⋅4+5​+1
Multiplier les nombres : 1⋅4=4=4+5​+1
Additionner les nombres : 4+1=5=5+5​
=45+5​​
=45+5​​1−41+5​​​
Relier 1−45​+1​:43−5​​
1−45​+1​
Convertir un élément en fraction: 1=41⋅4​=41⋅4​−45​+1​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=41⋅4−(5​+1)​
Multiplier les nombres : 1⋅4=4=44−(1+5​)​
Développer 4−(5​+1):3−5​
4−(5​+1)
−(5​+1):−5​−1
−(5​+1)
Distribuer des parenthèses=−(5​)−(1)
Appliquer les règles des moins et des plus+(−a)=−a=−5​−1
=4−5​−1
Soustraire les nombres : 4−1=3=3−5​
=43−5​​
=45+5​​43−5​​​
Diviser des fractions: dc​ba​​=b⋅ca⋅d​=4(5+5​)(3−5​)⋅4​
Annuler le facteur commun : 4=5+5​3−5​​
=5+5​3−5​​​
5+5​3−5​​=55−25​​
5+5​3−5​​
Multiplier par le conjugué 5−5​5−5​​=(5+5​)(5−5​)(3−5​)(5−5​)​
(3−5​)(5−5​)=20−85​
(3−5​)(5−5​)
Appliquer la méthode FOIL: (a+b)(c+d)=ac+ad+bc+bda=3,b=−5​,c=5,d=−5​=3⋅5+3(−5​)+(−5​)⋅5+(−5​)(−5​)
Appliquer les règles des moins et des plus+(−a)=−a,(−a)(−b)=ab=3⋅5−35​−55​+5​5​
Simplifier 3⋅5−35​−55​+5​5​:20−85​
3⋅5−35​−55​+5​5​
Additionner les éléments similaires : −35​−55​=−85​=3⋅5−85​+5​5​
Multiplier les nombres : 3⋅5=15=15−85​+5​5​
Appliquer la règle des radicaux: a​a​=a5​5​=5=15−85​+5
Additionner les nombres : 15+5=20=20−85​
=20−85​
(5+5​)(5−5​)=20
(5+5​)(5−5​)
Appliquer la formule de différence de deux carrés : (a+b)(a−b)=a2−b2a=5,b=5​=52−(5​)2
Simplifier 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Appliquer la règle des radicaux: a​=a21​=(521​)2
Appliquer la règle de l'exposant: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiplier des fractions: a⋅cb​=ca⋅b​=21⋅2​
Annuler le facteur commun : 2=1
=5
=25−5
Soustraire les nombres : 25−5=20=20
=20
=2020−85​​
Factoriser 20−85​:4(5−25​)
20−85​
Récrire comme=4⋅5−4⋅25​
Factoriser le terme commun 4=4(5−25​)
=204(5−25​)​
Annuler le facteur commun : 4=55−25​​
=55−25​​​
=55−25​​​

Exemples populaires

tan(3pi)tan(1/(sqrt(3)))tan(51)(cos(pi))/2cot(2)
Outils d'étudeSolveur mathématique IADes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension ChromeSymbolab Math Solver API
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeTermesPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024