Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8sin^2(x)2cos(x)=7,0<= x<= 2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8sin2(x)2cos(x)=7,0≤x≤2π

Solution

NoSolutionforx∈R
Solution steps
8sin2(x)⋅2cos(x)=7,0≤x≤2π
Subtract 7 from both sides16sin2(x)cos(x)−7=0
Rewrite using trig identities
−7+16cos(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−7+16cos(x)(1−cos2(x))
−7+(1−cos2(x))⋅16cos(x)=0
Solve by substitution
−7+(1−cos2(x))⋅16cos(x)=0
Let: cos(x)=u−7+(1−u2)⋅16u=0
−7+(1−u2)⋅16u=0:u≈−1.17189…
−7+(1−u2)⋅16u=0
Expand −7+(1−u2)⋅16u:−7+16u−16u3
−7+(1−u2)⋅16u
=−7+16u(1−u2)
Expand 16u(1−u2):16u−16u3
16u(1−u2)
Apply the distributive law: a(b−c)=ab−aca=16u,b=1,c=u2=16u⋅1−16uu2
=16⋅1⋅u−16u2u
Simplify 16⋅1⋅u−16u2u:16u−16u3
16⋅1⋅u−16u2u
16⋅1⋅u=16u
16⋅1⋅u
Multiply the numbers: 16⋅1=16=16u
16u2u=16u3
16u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=16u2+1
Add the numbers: 2+1=3=16u3
=16u−16u3
=16u−16u3
=−7+16u−16u3
−7+16u−16u3=0
Write in the standard form an​xn+…+a1​x+a0​=0−16u3+16u−7=0
Find one solution for −16u3+16u−7=0 using Newton-Raphson:u≈−1.17189…
−16u3+16u−7=0
Newton-Raphson Approximation Definition
f(u)=−16u3+16u−7
Find f′(u):−48u2+16
dud​(−16u3+16u−7)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(16u3)+dud​(16u)−dud​(7)
dud​(16u3)=48u2
dud​(16u3)
Take the constant out: (a⋅f)′=a⋅f′=16dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=16⋅3u3−1
Simplify=48u2
dud​(16u)=16
dud​(16u)
Take the constant out: (a⋅f)′=a⋅f′=16dudu​
Apply the common derivative: dudu​=1=16⋅1
Simplify=16
dud​(7)=0
dud​(7)
Derivative of a constant: dxd​(a)=0=0
=−48u2+16−0
Simplify=−48u2+16
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−1.49431…:Δu1​=0.50568…
f(u0​)=−16(−2)3+16(−2)−7=89f′(u0​)=−48(−2)2+16=−176u1​=−1.49431…
Δu1​=∣−1.49431…−(−2)∣=0.50568…Δu1​=0.50568…
u2​=−1.24778…:Δu2​=0.24653…
f(u1​)=−16(−1.49431…)3+16(−1.49431…)−7=22.47959…f′(u1​)=−48(−1.49431…)2+16=−91.18336…u2​=−1.24778…
Δu2​=∣−1.24778…−(−1.49431…)∣=0.24653…Δu2​=0.24653…
u3​=−1.17764…:Δu3​=0.07014…
f(u2​)=−16(−1.24778…)3+16(−1.24778…)−7=4.11969…f′(u2​)=−48(−1.24778…)2+16=−58.73460…u3​=−1.17764…
Δu3​=∣−1.17764…−(−1.24778…)∣=0.07014…Δu3​=0.07014…
u4​=−1.17192…:Δu4​=0.00571…
f(u3​)=−16(−1.17764…)3+16(−1.17764…)−7=0.28914…f′(u3​)=−48(−1.17764…)2+16=−50.56876…u4​=−1.17192…
Δu4​=∣−1.17192…−(−1.17764…)∣=0.00571…Δu4​=0.00571…
u5​=−1.17189…:Δu5​=0.00003…
f(u4​)=−16(−1.17192…)3+16(−1.17192…)−7=0.00184…f′(u4​)=−48(−1.17192…)2+16=−49.92391…u5​=−1.17189…
Δu5​=∣−1.17189…−(−1.17192…)∣=0.00003…Δu5​=0.00003…
u6​=−1.17189…:Δu6​=1.53907E−9
f(u5​)=−16(−1.17189…)3+16(−1.17189…)−7=7.68298E−8f′(u5​)=−48(−1.17189…)2+16=−49.91975…u6​=−1.17189…
Δu6​=∣−1.17189…−(−1.17189…)∣=1.53907E−9Δu6​=1.53907E−9
u≈−1.17189…
Apply long division:u+1.17189…−16u3+16u−7​=−16u2+18.75025…u−5.97325…
−16u2+18.75025…u−5.97325…≈0
Find one solution for −16u2+18.75025…u−5.97325…=0 using Newton-Raphson:No Solution for u∈R
−16u2+18.75025…u−5.97325…=0
Newton-Raphson Approximation Definition
f(u)=−16u2+18.75025…u−5.97325…
Find f′(u):−32u+18.75025…
dud​(−16u2+18.75025…u−5.97325…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(16u2)+dud​(18.75025…u)−dud​(5.97325…)
dud​(16u2)=32u
dud​(16u2)
Take the constant out: (a⋅f)′=a⋅f′=16dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=16⋅2u2−1
Simplify=32u
dud​(18.75025…u)=18.75025…
dud​(18.75025…u)
Take the constant out: (a⋅f)′=a⋅f′=18.75025…dudu​
Apply the common derivative: dudu​=1=18.75025…⋅1
Simplify=18.75025…
dud​(5.97325…)=0
dud​(5.97325…)
Derivative of a constant: dxd​(a)=0=0
=−32u+18.75025…−0
Simplify=−32u+18.75025…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.31856…:Δu1​=0.31856…
f(u0​)=−16⋅02+18.75025…⋅0−5.97325…=−5.97325…f′(u0​)=−32⋅0+18.75025…=18.75025…u1​=0.31856…
Δu1​=∣0.31856…−0∣=0.31856…Δu1​=0.31856…
u2​=0.50835…:Δu2​=0.18978…
f(u1​)=−16⋅0.31856…2+18.75025…⋅0.31856…−5.97325…=−1.62378…f′(u1​)=−32⋅0.31856…+18.75025…=8.55604…u2​=0.50835…
Δu2​=∣0.50835…−0.31856…∣=0.18978…Δu2​=0.18978…
u3​=0.74043…:Δu3​=0.23208…
f(u2​)=−16⋅0.50835…2+18.75025…⋅0.50835…−5.97325…=−0.57627…f′(u2​)=−32⋅0.50835…+18.75025…=2.48302…u3​=0.74043…
Δu3​=∣0.74043…−0.50835…∣=0.23208…Δu3​=0.23208…
u4​=0.56610…:Δu4​=0.17432…
f(u3​)=−16⋅0.74043…2+18.75025…⋅0.74043…−5.97325…=−0.86181…f′(u3​)=−32⋅0.74043…+18.75025…=−4.94370…u4​=0.56610…
Δu4​=∣0.56610…−0.74043…∣=0.17432…Δu4​=0.17432…
u5​=1.33215…:Δu5​=0.76604…
f(u4​)=−16⋅0.56610…2+18.75025…⋅0.56610…−5.97325…=−0.48623…f′(u4​)=−32⋅0.56610…+18.75025…=0.63473…u5​=1.33215…
Δu5​=∣1.33215…−0.56610…∣=0.76604…Δu5​=0.76604…
u6​=0.93895…:Δu6​=0.39320…
f(u5​)=−16⋅1.33215…2+18.75025…⋅1.33215…−5.97325…=−9.38914…f′(u5​)=−32⋅1.33215…+18.75025…=−23.87863…u6​=0.93895…
Δu6​=∣0.93895…−1.33215…∣=0.39320…Δu6​=0.39320…
u7​=0.71996…:Δu7​=0.21898…
f(u6​)=−16⋅0.93895…2+18.75025…⋅0.93895…−5.97325…=−2.47373…f′(u6​)=−32⋅0.93895…+18.75025…=−11.29614…u7​=0.71996…
Δu7​=∣0.71996…−0.93895…∣=0.21898…Δu7​=0.21898…
u8​=0.54103…:Δu8​=0.17892…
f(u7​)=−16⋅0.71996…2+18.75025…⋅0.71996…−5.97325…=−0.76730…f′(u7​)=−32⋅0.71996…+18.75025…=−4.28849…u8​=0.54103…
Δu8​=∣0.54103…−0.71996…∣=0.17892…Δu8​=0.17892…
u9​=0.89748…:Δu9​=0.35644…
f(u8​)=−16⋅0.54103…2+18.75025…⋅0.54103…−5.97325…=−0.51220…f′(u8​)=−32⋅0.54103…+18.75025…=1.43698…u9​=0.89748…
Δu9​=∣0.89748…−0.54103…∣=0.35644…Δu9​=0.35644…
u10​=0.69357…:Δu10​=0.20391…
f(u9​)=−16⋅0.89748…2+18.75025…⋅0.89748…−5.97325…=−2.03283…f′(u9​)=−32⋅0.89748…+18.75025…=−9.96922…u10​=0.69357…
Δu10​=∣0.69357…−0.89748…∣=0.20391…Δu10​=0.20391…
u11​=0.50040…:Δu11​=0.19316…
f(u10​)=−16⋅0.69357…2+18.75025…⋅0.69357…−5.97325…=−0.66527…f′(u10​)=−32⋅0.69357…+18.75025…=−3.44406…u11​=0.50040…
Δu11​=∣0.50040…−0.69357…∣=0.19316…Δu11​=0.19316…
u12​=0.71851…:Δu12​=0.21810…
f(u11​)=−16⋅0.50040…2+18.75025…⋅0.50040…−5.97325…=−0.59700…f′(u11​)=−32⋅0.50040…+18.75025…=2.73724…u12​=0.71851…
Δu12​=∣0.71851…−0.50040…∣=0.21810…Δu12​=0.21810…
Cannot find solution
The solution isu≈−1.17189…
Substitute back u=cos(x)cos(x)≈−1.17189…
cos(x)≈−1.17189…
cos(x)=−1.17189…,0≤x≤2π:No Solution
cos(x)=−1.17189…,0≤x≤2π
−1≤cos(x)≤1NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)-sin(x)+3=49cos(2x)=9cos^2(x)-42-cos(x)=0sin(1/x)=12sin(θ)-cos(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 8sin^2(x)2cos(x)=7,0<= x<= 2pi ?

    The general solution for 8sin^2(x)2cos(x)=7,0<= x<= 2pi is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024