Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x)=sqrt(cos(2x)+2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)=cos(2x)+2​

Solution

x=4π​+2πn,x=43π​+2πn
+1
Degrees
x=45∘+360∘n,x=135∘+360∘n
Solution steps
2sin(x)=cos(2x)+2​
Subtract cos(2x)+2​ from both sides2sin(x)−cos(2x)+2​=0
Rewrite using trig identities
−2+cos(2x)​+2sin(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−2+1−2sin2(x)​+2sin(x)
Simplify=−−2sin2(x)+3​+2sin(x)
−3−2sin2(x)​+2sin(x)=0
Solve by substitution
−3−2sin2(x)​+2sin(x)=0
Let: sin(x)=u−3−2u2​+2u=0
−3−2u2​+2u=0:u=21​​
−3−2u2​+2u=0
Remove square roots
−3−2u2​+2u=0
Subtract 2u from both sides−3−2u2​+2u−2u=0−2u
Simplify−3−2u2​=−2u
Square both sides:3−2u2=4u2
−3−2u2​+2u=0
(−3−2u2​)2=(−2u)2
Expand (−3−2u2​)2:3−2u2
(−3−2u2​)2
Apply exponent rule: (−a)n=an,if n is even(−3−2u2​)2=(3−2u2​)2=(3−2u2​)2
Apply radical rule: a​=a21​=((3−2u2)21​)2
Apply exponent rule: (ab)c=abc=(3−2u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3−2u2
Expand (−2u)2:4u2
(−2u)2
Apply exponent rule: (−a)n=an,if n is even(−2u)2=(2u)2=(2u)2
Apply exponent rule: (a⋅b)n=anbn=22u2
22=4=4u2
3−2u2=4u2
3−2u2=4u2
3−2u2=4u2
Solve 3−2u2=4u2:u=21​​,u=−21​​
3−2u2=4u2
Move 3to the right side
3−2u2=4u2
Subtract 3 from both sides3−2u2−3=4u2−3
Simplify−2u2=4u2−3
−2u2=4u2−3
Move 4u2to the left side
−2u2=4u2−3
Subtract 4u2 from both sides−2u2−4u2=4u2−3−4u2
Simplify−6u2=−3
−6u2=−3
Divide both sides by −6
−6u2=−3
Divide both sides by −6−6−6u2​=−6−3​
Simplify
−6−6u2​=−6−3​
Simplify −6−6u2​:u2
−6−6u2​
Apply the fraction rule: −b−a​=ba​=66u2​
Divide the numbers: 66​=1=u2
Simplify −6−3​:21​
−6−3​
Apply the fraction rule: −b−a​=ba​=63​
Cancel the common factor: 3=21​
u2=21​
u2=21​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
u=21​​,u=−21​​
Verify Solutions:u=21​​True,u=−21​​False
Check the solutions by plugging them into −3−2u2​+2u=0
Remove the ones that don't agree with the equation.
Plug in u=21​​:True
−3−2(21​​)2​+221​​=0
−3−2(21​​)2​+221​​=0
−3−2(21​​)2​+221​​
3−2(21​​)2​=2​
3−2(21​​)2​
2(21​​)2=1
2(21​​)2
(21​​)2=21​
(21​​)2
Apply radical rule: a​=a21​=((21​)21​)2
Apply exponent rule: (ab)c=abc=(21​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3−1​
Subtract the numbers: 3−1=2=2​
221​​=2​
221​​
Apply exponent rule: aab​​=a2ab​​221​​=22⋅21​​=22⋅21​​
Multiply 22⋅21​:2
22⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅22​
Multiply: 1⋅22=22=222​
Cancel the common factor: 2=2
=2​
=−2​+2​
Add similar elements: −2​+2​=0=0
0=0
True
Plug in u=−21​​:False
−3−2(−21​​)2​+2(−21​​)=0
−3−2(−21​​)2​+2(−21​​)=−22​
−3−2(−21​​)2​+2(−21​​)
Remove parentheses: (−a)=−a=−3−2(−21​​)2​−221​​
3−2(−21​​)2​=2​
3−2(−21​​)2​
2(−21​​)2=1
2(−21​​)2
(−21​​)2=21​
(−21​​)2
Apply exponent rule: (−a)n=an,if n is even(−21​​)2=(21​​)2=(21​​)2
Apply radical rule: a​=a21​=((21​)21​)2
Apply exponent rule: (ab)c=abc=(21​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3−1​
Subtract the numbers: 3−1=2=2​
221​​=2​
221​​
Apply exponent rule: aab​​=a2ab​​221​​=22⋅21​​=22⋅21​​
Multiply 22⋅21​:2
22⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅22​
Multiply: 1⋅22=22=222​
Cancel the common factor: 2=2
=2​
=−2​−2​
Add similar elements: −2​−2​=−22​=−22​
−22​=0
False
The solution isu=21​​
Substitute back u=sin(x)sin(x)=21​​
sin(x)=21​​
sin(x)=21​​:x=4π​+2πn,x=43π​+2πn
sin(x)=21​​
General solutions for sin(x)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Combine all the solutionsx=4π​+2πn,x=43π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)= 7/12cos(x)=sqrt(1-sin(x))-sin(a)-1=3sin(a)+2tan(x)=7cot(x)(tan(x)-sqrt(3))=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(x)=sqrt(cos(2x)+2) ?

    The general solution for 2sin(x)=sqrt(cos(2x)+2) is x= pi/4+2pin,x=(3pi)/4+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024