Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc^3(x)+csc^2(x)= 4/3 csc(x)+4/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc3(x)+csc2(x)=34​csc(x)+34​

Solution

x=23π​+2πn,x=34π​+2πn,x=35π​+2πn,x=3π​+2πn,x=32π​+2πn
+1
Degrees
x=270∘+360∘n,x=240∘+360∘n,x=300∘+360∘n,x=60∘+360∘n,x=120∘+360∘n
Solution steps
csc3(x)+csc2(x)=34​csc(x)+34​
Solve by substitution
csc3(x)+csc2(x)=34​csc(x)+34​
Let: csc(x)=uu3+u2=34​u+34​
u3+u2=34​u+34​:u=−1,u=−323​​,u=323​​
u3+u2=34​u+34​
Multiply both sides by 3
u3+u2=34​u+34​
Multiply both sides by 3u3⋅3+u2⋅3=34​u⋅3+34​⋅3
Simplify3u3+3u2=4u+4
3u3+3u2=4u+4
Move 4to the left side
3u3+3u2=4u+4
Subtract 4 from both sides3u3+3u2−4=4u+4−4
Simplify3u3+3u2−4=4u
3u3+3u2−4=4u
Move 4uto the left side
3u3+3u2−4=4u
Subtract 4u from both sides3u3+3u2−4−4u=4u−4u
Simplify3u3+3u2−4−4u=0
3u3+3u2−4−4u=0
Write in the standard form an​xn+…+a1​x+a0​=03u3+3u2−4u−4=0
Factor 3u3+3u2−4u−4:(u+1)(3​u+2)(3​u−2)
3u3+3u2−4u−4
=(3u3+3u2)+(−4u−4)
Factor out −4from −4u−4:−4(u+1)
−4u−4
Factor out common term −4=−4(u+1)
Factor out 3u2from 3u3+3u2:3u2(u+1)
3u3+3u2
Apply exponent rule: ab+c=abacu3=uu2=3uu2+3u2
Factor out common term 3u2=3u2(u+1)
=−4(u+1)+3u2(u+1)
Factor out common term u+1=(u+1)(3u2−4)
Factor 3u2−4:(3​u+2)(3​u−2)
3u2−4
Rewrite 3u2−4 as (3​u)2−22
3u2−4
Apply radical rule: a=(a​)23=(3​)2=(3​)2u2−4
Rewrite 4 as 22=(3​)2u2−22
Apply exponent rule: ambm=(ab)m(3​)2u2=(3​u)2=(3​u)2−22
=(3​u)2−22
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​u)2−22=(3​u+2)(3​u−2)=(3​u+2)(3​u−2)
=(u+1)(3​u+2)(3​u−2)
(u+1)(3​u+2)(3​u−2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0or3​u+2=0or3​u−2=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve 3​u+2=0:u=−323​​
3​u+2=0
Move 2to the right side
3​u+2=0
Subtract 2 from both sides3​u+2−2=0−2
Simplify3​u=−2
3​u=−2
Divide both sides by 3​
3​u=−2
Divide both sides by 3​3​3​u​=3​−2​
Simplify
3​3​u​=3​−2​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​−2​:−323​​
3​−2​
Apply the fraction rule: b−a​=−ba​=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=−323​​
u=−323​​
u=−323​​
Solve 3​u−2=0:u=323​​
3​u−2=0
Move 2to the right side
3​u−2=0
Add 2 to both sides3​u−2+2=0+2
Simplify3​u=2
3​u=2
Divide both sides by 3​
3​u=2
Divide both sides by 3​3​3​u​=3​2​
Simplify
3​3​u​=3​2​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
u=323​​
u=323​​
u=323​​
The solutions areu=−1,u=−323​​,u=323​​
Substitute back u=csc(x)csc(x)=−1,csc(x)=−323​​,csc(x)=323​​
csc(x)=−1,csc(x)=−323​​,csc(x)=323​​
csc(x)=−1:x=23π​+2πn
csc(x)=−1
General solutions for csc(x)=−1
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=23π​+2πn
x=23π​+2πn
csc(x)=−323​​:x=34π​+2πn,x=35π​+2πn
csc(x)=−323​​
General solutions for csc(x)=−323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=34π​+2πn,x=35π​+2πn
x=34π​+2πn,x=35π​+2πn
csc(x)=323​​:x=3π​+2πn,x=32π​+2πn
csc(x)=323​​
General solutions for csc(x)=323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=3π​+2πn,x=32π​+2πn
x=3π​+2πn,x=32π​+2πn
Combine all the solutionsx=23π​+2πn,x=34π​+2πn,x=35π​+2πn,x=3π​+2πn,x=32π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6sec^2(x)tan(x)=12tan(x)cos(θ)+cos(2θ)=0sin(2x)=2sin(2x)=sin(4x)2tan^3(x)-2/3 tan(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024