Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(x)-arccos(x)=arcsin(3x-2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(x)−arccos(x)=arcsin(3x−2)

Solution

x=1,x=21​
Solution steps
arcsin(x)−arccos(x)=arcsin(3x−2)
a=b⇒sin(a)=sin(b)sin(arcsin(x)−arccos(x))=sin(arcsin(3x−2))
Use the following identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)sin(arcsin(x))cos(arccos(x))−cos(arcsin(x))sin(arccos(x))=sin(arcsin(3x−2))
Use the following identity: sin(arcsin(x))=x
Use the following identity: cos(arccos(x))=x
Use the following identity: cos(arcsin(x))=1−x2​
Use the following identity: sin(arccos(x))=1−x2​
xx−1−x2​1−x2​=3x−2
Solve xx−1−x2​1−x2​=3x−2:x=1,x=21​
xx−1−x2​1−x2​=3x−2
Expand xx−1−x2​1−x2​:2x2−1
xx−1−x2​1−x2​
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
1−x2​1−x2​=1−x2
1−x2​1−x2​
Apply radical rule: a​a​=a1−x2​1−x2​=1−x2=1−x2
=x2−(1−x2)
Expand x2−(1−x2):2x2−1
x2−(1−x2)
−(1−x2):−1+x2
−(1−x2)
Distribute parentheses=−(1)−(−x2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+x2
=x2−1+x2
Simplify x2−1+x2:2x2−1
x2−1+x2
Group like terms=x2+x2−1
Add similar elements: x2+x2=2x2=2x2−1
=2x2−1
=2x2−1
2x2−1=3x−2
Solve 2x2−1=3x−2:x=1,x=21​
2x2−1=3x−2
Move 2to the left side
2x2−1=3x−2
Add 2 to both sides2x2−1+2=3x−2+2
Simplify2x2+1=3x
2x2+1=3x
Move 3xto the left side
2x2+1=3x
Subtract 3x from both sides2x2+1−3x=3x−3x
Simplify2x2+1−3x=0
2x2+1−3x=0
Write in the standard form ax2+bx+c=02x2−3x+1=0
Solve with the quadratic formula
2x2−3x+1=0
Quadratic Equation Formula:
For a=2,b=−3,c=1x1,2​=2⋅2−(−3)±(−3)2−4⋅2⋅1​​
x1,2​=2⋅2−(−3)±(−3)2−4⋅2⋅1​​
(−3)2−4⋅2⋅1​=1
(−3)2−4⋅2⋅1​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
x1,2​=2⋅2−(−3)±1​
Separate the solutionsx1​=2⋅2−(−3)+1​,x2​=2⋅2−(−3)−1​
x=2⋅2−(−3)+1​:1
2⋅2−(−3)+1​
Apply rule −(−a)=a=2⋅23+1​
Add the numbers: 3+1=4=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
x=2⋅2−(−3)−1​:21​
2⋅2−(−3)−1​
Apply rule −(−a)=a=2⋅23−1​
Subtract the numbers: 3−1=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
The solutions to the quadratic equation are:x=1,x=21​
x=1,x=21​
Verify Solutions:x=1True,x=21​True
Check the solutions by plugging them into xx−1−x2​1−x2​=3x−2
Remove the ones that don't agree with the equation.
Plug in x=1:True
1⋅1−1−12​1−12​=3⋅1−2
1⋅1−1−12​1−12​=1
1⋅1−1−12​1−12​
Apply rule 1a=112=1=1⋅1−1−1​1−1​
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
1−1​1−1​=0
1−1​1−1​
1−1​=0
1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅1−1​
1−1​=0
1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅0
Multiply the numbers: 0⋅0=0=0
=1−0
Subtract the numbers: 1−0=1=1
3⋅1−2=1
3⋅1−2
Multiply the numbers: 3⋅1=3=3−2
Subtract the numbers: 3−2=1=1
1=1
True
Plug in x=21​:True
(21​)(21​)−1−(21​)2​1−(21​)2​=3(21​)−2
(21​)(21​)−1−(21​)2​1−(21​)2​=−21​
(21​)(21​)−1−(21​)2​1−(21​)2​
Remove parentheses: (a)=a=21​⋅21​−1−(21​)2​1−(21​)2​
21​⋅21​=41​
21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
1−(21​)2​1−(21​)2​=43​
1−(21​)2​1−(21​)2​
Apply radical rule: a​a​=a−(21​)2+1​−(21​)2+1​=1−(21​)2=1−(21​)2
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=41​−43​
Apply rule ca​±cb​=ca±b​=41−3​
Subtract the numbers: 1−3=−2=4−2​
Apply the fraction rule: b−a​=−ba​=−42​
Cancel the common factor: 2=−21​
3(21​)−2=−21​
3(21​)−2
Remove parentheses: (a)=a=3⋅21​−2
3⋅21​=23​
3⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=23​−2
Convert element to fraction: 2=22⋅2​=−22⋅2​+23​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−2⋅2+3​
−2⋅2+3=−1
−2⋅2+3
Multiply the numbers: 2⋅2=4=−4+3
Add/Subtract the numbers: −4+3=−1=−1
=2−1​
Apply the fraction rule: b−a​=−ba​=−21​
−21​=−21​
True
The solutions arex=1,x=21​
x=1,x=21​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(x)−arccos(x)=arcsin(3x−2)
Remove the ones that don't agree with the equation.
Check the solution 1:True
1
Plug in n=11
For arcsin(x)−arccos(x)=arcsin(3x−2)plug inx=1arcsin(1)−arccos(1)=arcsin(3⋅1−2)
Refine1.57079…=1.57079…
⇒True
Check the solution 21​:True
21​
Plug in n=121​
For arcsin(x)−arccos(x)=arcsin(3x−2)plug inx=21​arcsin(21​)−arccos(21​)=arcsin(3⋅21​−2)
Refine−0.52359…=−0.52359…
⇒True
x=1,x=21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)=-0.615arcsin(x)=5pi2sin^2(x)-sin(x)=0,0<= x<2pisin(x)= 3/72sin(θ)+6=-sqrt(3)+6

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(x)-arccos(x)=arcsin(3x-2) ?

    The general solution for arcsin(x)-arccos(x)=arcsin(3x-2) is x=1,x= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024