Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1-cos(2x))/(sin(2x))=sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)1−cos(2x)​=3​

Solution

x=3π​+πn
+1
Degrees
x=60∘+180∘n
Solution steps
sin(2x)1−cos(2x)​=3​
Subtract 3​ from both sidessin(2x)1−cos(2x)​−3​=0
Simplify sin(2x)1−cos(2x)​−3​:sin(2x)1−cos(2x)−3​sin(2x)​
sin(2x)1−cos(2x)​−3​
Convert element to fraction: 3​=sin(2x)3​sin(2x)​=sin(2x)1−cos(2x)​−sin(2x)3​sin(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(2x)1−cos(2x)−3​sin(2x)​
sin(2x)1−cos(2x)−3​sin(2x)​=0
g(x)f(x)​=0⇒f(x)=01−cos(2x)−3​sin(2x)=0
Rewrite using trig identities
1−cos(2x)−sin(2x)3​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=1−cos(2x)−3​⋅2sin(x)cos(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=1−(1−2sin2(x))−23​cos(x)sin(x)
Simplify 1−(1−2sin2(x))−23​cos(x)sin(x):2sin2(x)−23​cos(x)sin(x)
1−(1−2sin2(x))−23​cos(x)sin(x)
−(1−2sin2(x)):−1+2sin2(x)
−(1−2sin2(x))
Distribute parentheses=−(1)−(−2sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(x)
=1−1+2sin2(x)−23​cos(x)sin(x)
1−1=0=2sin2(x)−23​cos(x)sin(x)
=2sin2(x)−23​cos(x)sin(x)
2sin2(x)−2cos(x)sin(x)3​=0
Factor 2sin2(x)−2cos(x)sin(x)3​:2sin(x)(sin(x)−3​cos(x))
2sin2(x)−2cos(x)sin(x)3​
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=2sin(x)sin(x)−2cos(x)sin(x)3​
Rewrite as=2sin(x)sin(x)−2sin(x)cos(x)3​
Factor out common term 2sin(x)=2sin(x)(sin(x)−cos(x)3​)
2sin(x)(sin(x)−3​cos(x))=0
Solving each part separatelysin(x)=0orsin(x)−3​cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)−3​cos(x)=0:x=3π​+πn
sin(x)−3​cos(x)=0
Rewrite using trig identities
sin(x)−3​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−3​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−3​=0
tan(x)−3​=0
Move 3​to the right side
tan(x)−3​=0
Add 3​ to both sidestan(x)−3​+3​=0+3​
Simplifytan(x)=3​
tan(x)=3​
General solutions for tan(x)=3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=3π​+πn
x=3π​+πn
Combine all the solutionsx=2πn,x=π+2πn,x=3π​+πn
Since the equation is undefined for:2πn,π+2πnx=3π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(-3x-pi/4)=sqrt(2),0<= x<= 2pi9sin^2(θ)-9sin(θ)-2=-6sin(θ)5cot(θ)+3=0cos(x)+1=12sin(5x)+3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for (1-cos(2x))/(sin(2x))=sqrt(3) ?

    The general solution for (1-cos(2x))/(sin(2x))=sqrt(3) is x= pi/3+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024