Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6tan^2(x)-2cos^2(x)=cos(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6tan2(x)−2cos2(x)=cos(2x)

Solution

x=6π​+2πn,x=611π​+2πn,x=65π​+2πn,x=67π​+2πn
+1
Degrees
x=30∘+360∘n,x=330∘+360∘n,x=150∘+360∘n,x=210∘+360∘n
Solution steps
6tan2(x)−2cos2(x)=cos(2x)
Subtract cos(2x) from both sides6tan2(x)−2cos2(x)−cos(2x)=0
Express with sin, cos
−cos(2x)−2cos2(x)+6tan2(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(2x)−2cos2(x)+6(cos(x)sin(x)​)2
Simplify −cos(2x)−2cos2(x)+6(cos(x)sin(x)​)2:cos2(x)−cos2(x)cos(2x)−2cos4(x)+6sin2(x)​
−cos(2x)−2cos2(x)+6(cos(x)sin(x)​)2
6(cos(x)sin(x)​)2=cos2(x)6sin2(x)​
6(cos(x)sin(x)​)2
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)sin2(x)​
=6⋅cos2(x)sin2(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos2(x)sin2(x)⋅6​
=−cos(2x)−2cos2(x)+cos2(x)6sin2(x)​
Convert element to fraction: cos(2x)=cos2(x)cos(2x)cos2(x)​,2cos2(x)=cos2(x)2cos2(x)cos2(x)​=−cos2(x)cos(2x)cos2(x)​−cos2(x)2cos2(x)cos2(x)​+cos2(x)sin2(x)⋅6​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)−cos(2x)cos2(x)−2cos2(x)cos2(x)+sin2(x)⋅6​
−cos(2x)cos2(x)−2cos2(x)cos2(x)+sin2(x)⋅6=−cos2(x)cos(2x)−2cos4(x)+6sin2(x)
−cos(2x)cos2(x)−2cos2(x)cos2(x)+sin2(x)⋅6
2cos2(x)cos2(x)=2cos4(x)
2cos2(x)cos2(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos2(x)=cos2+2(x)=2cos2+2(x)
Add the numbers: 2+2=4=2cos4(x)
=−cos2(x)cos(2x)−2cos4(x)+6sin2(x)
=cos2(x)−cos2(x)cos(2x)−2cos4(x)+6sin2(x)​
=cos2(x)−cos2(x)cos(2x)−2cos4(x)+6sin2(x)​
cos2(x)−2cos4(x)+6sin2(x)−cos(2x)cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0−2cos4(x)+6sin2(x)−cos(2x)cos2(x)=0
Rewrite using trig identities
−2cos4(x)+6sin2(x)−cos(2x)cos2(x)
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=−2cos4(x)+6sin2(x)−cos2(x)(cos2(x)−sin2(x))
Simplify −2cos4(x)+6sin2(x)−cos2(x)(cos2(x)−sin2(x)):−3cos4(x)+6sin2(x)+cos2(x)sin2(x)
−2cos4(x)+6sin2(x)−cos2(x)(cos2(x)−sin2(x))
Expand −cos2(x)(cos2(x)−sin2(x)):−cos4(x)+cos2(x)sin2(x)
−cos2(x)(cos2(x)−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−cos2(x),b=cos2(x),c=sin2(x)=−cos2(x)cos2(x)−(−cos2(x))sin2(x)
Apply minus-plus rules−(−a)=a=−cos2(x)cos2(x)+cos2(x)sin2(x)
cos2(x)cos2(x)=cos4(x)
cos2(x)cos2(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos2(x)=cos2+2(x)=cos2+2(x)
Add the numbers: 2+2=4=cos4(x)
=−cos4(x)+cos2(x)sin2(x)
=−2cos4(x)+6sin2(x)−cos4(x)+cos2(x)sin2(x)
Add similar elements: −2cos4(x)−cos4(x)=−3cos4(x)=−3cos4(x)+6sin2(x)+cos2(x)sin2(x)
=−3cos4(x)+6sin2(x)+cos2(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−3cos4(x)+6(1−cos2(x))+cos2(x)(1−cos2(x))
Simplify −3cos4(x)+6(1−cos2(x))+cos2(x)(1−cos2(x)):−4cos4(x)−5cos2(x)+6
−3cos4(x)+6(1−cos2(x))+cos2(x)(1−cos2(x))
Expand 6(1−cos2(x)):6−6cos2(x)
6(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=6,b=1,c=cos2(x)=6⋅1−6cos2(x)
Multiply the numbers: 6⋅1=6=6−6cos2(x)
=−3cos4(x)+6−6cos2(x)+cos2(x)(1−cos2(x))
Expand cos2(x)(1−cos2(x)):cos2(x)−cos4(x)
cos2(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=cos2(x),b=1,c=cos2(x)=cos2(x)⋅1−cos2(x)cos2(x)
=1⋅cos2(x)−cos2(x)cos2(x)
Simplify 1⋅cos2(x)−cos2(x)cos2(x):cos2(x)−cos4(x)
1⋅cos2(x)−cos2(x)cos2(x)
1⋅cos2(x)=cos2(x)
1⋅cos2(x)
Multiply: 1⋅cos2(x)=cos2(x)=cos2(x)
cos2(x)cos2(x)=cos4(x)
cos2(x)cos2(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos2(x)=cos2+2(x)=cos2+2(x)
Add the numbers: 2+2=4=cos4(x)
=cos2(x)−cos4(x)
=cos2(x)−cos4(x)
=−3cos4(x)+6−6cos2(x)+cos2(x)−cos4(x)
Simplify −3cos4(x)+6−6cos2(x)+cos2(x)−cos4(x):−4cos4(x)−5cos2(x)+6
−3cos4(x)+6−6cos2(x)+cos2(x)−cos4(x)
Group like terms=−3cos4(x)−6cos2(x)+cos2(x)−cos4(x)+6
Add similar elements: −6cos2(x)+cos2(x)=−5cos2(x)=−3cos4(x)−5cos2(x)−cos4(x)+6
Add similar elements: −3cos4(x)−cos4(x)=−4cos4(x)=−4cos4(x)−5cos2(x)+6
=−4cos4(x)−5cos2(x)+6
=−4cos4(x)−5cos2(x)+6
6−4cos4(x)−5cos2(x)=0
Solve by substitution
6−4cos4(x)−5cos2(x)=0
Let: cos(x)=u6−4u4−5u2=0
6−4u4−5u2=0:u=2​i,u=−2​i,u=23​​,u=−23​​
6−4u4−5u2=0
Write in the standard form an​xn+…+a1​x+a0​=0−4u4−5u2+6=0
Rewrite the equation with v=u2 and v2=u4−4v2−5v+6=0
Solve −4v2−5v+6=0:v=−2,v=43​
−4v2−5v+6=0
Solve with the quadratic formula
−4v2−5v+6=0
Quadratic Equation Formula:
For a=−4,b=−5,c=6v1,2​=2(−4)−(−5)±(−5)2−4(−4)⋅6​​
v1,2​=2(−4)−(−5)±(−5)2−4(−4)⋅6​​
(−5)2−4(−4)⋅6​=11
(−5)2−4(−4)⋅6​
Apply rule −(−a)=a=(−5)2+4⋅4⋅6​
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52+4⋅4⋅6​
Multiply the numbers: 4⋅4⋅6=96=52+96​
52=25=25+96​
Add the numbers: 25+96=121=121​
Factor the number: 121=112=112​
Apply radical rule: 112​=11=11
v1,2​=2(−4)−(−5)±11​
Separate the solutionsv1​=2(−4)−(−5)+11​,v2​=2(−4)−(−5)−11​
v=2(−4)−(−5)+11​:−2
2(−4)−(−5)+11​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅45+11​
Add the numbers: 5+11=16=−2⋅416​
Multiply the numbers: 2⋅4=8=−816​
Apply the fraction rule: −ba​=−ba​=−816​
Divide the numbers: 816​=2=−2
v=2(−4)−(−5)−11​:43​
2(−4)−(−5)−11​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅45−11​
Subtract the numbers: 5−11=−6=−2⋅4−6​
Multiply the numbers: 2⋅4=8=−8−6​
Apply the fraction rule: −b−a​=ba​=86​
Cancel the common factor: 2=43​
The solutions to the quadratic equation are:v=−2,v=43​
v=−2,v=43​
Substitute back v=u2,solve for u
Solve u2=−2:u=2​i,u=−2​i
u2=−2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−2​,u=−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
Simplify −−2​:−2​i
−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
=−2​i
u=2​i,u=−2​i
Solve u2=43​:u=23​​,u=−23​​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
The solutions are
u=2​i,u=−2​i,u=23​​,u=−23​​
Substitute back u=cos(x)cos(x)=2​i,cos(x)=−2​i,cos(x)=23​​,cos(x)=−23​​
cos(x)=2​i,cos(x)=−2​i,cos(x)=23​​,cos(x)=−23​​
cos(x)=2​i:No Solution
cos(x)=2​i
NoSolution
cos(x)=−2​i:No Solution
cos(x)=−2​i
NoSolution
cos(x)=23​​:x=6π​+2πn,x=611π​+2πn
cos(x)=23​​
General solutions for cos(x)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=6π​+2πn,x=611π​+2πn
x=6π​+2πn,x=611π​+2πn
cos(x)=−23​​:x=65π​+2πn,x=67π​+2πn
cos(x)=−23​​
General solutions for cos(x)=−23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=65π​+2πn,x=67π​+2πn
x=65π​+2πn,x=67π​+2πn
Combine all the solutionsx=6π​+2πn,x=611π​+2πn,x=65π​+2πn,x=67π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)-3sin(x)-3=06tan(θ)+5=0solvefor x,y=arcsin(x)tan(a)= 5/122sin(x)-3=-csc(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024