Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,tan(x)+cot(x)= 1/f

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,tan(x)+cot(x)=f1​

Solution

x=arccot(2f1+1−4f2​​)+πn,x=arccot(2f1−1−4f2​​)+πn
Solution steps
tan(x)+cot(x)=f1​
Subtract f1​ from both sidestan(x)+cot(x)−f1​=0
Simplify tan(x)+cot(x)−f1​:fftan(x)+fcot(x)−1​
tan(x)+cot(x)−f1​
Convert element to fraction: tan(x)=ftan(x)f​,cot(x)=fcot(x)f​=ftan(x)f​+fcot(x)f​−f1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=ftan(x)f+cot(x)f−1​
fftan(x)+fcot(x)−1​=0
g(x)f(x)​=0⇒f(x)=0ftan(x)+fcot(x)−1=0
Rewrite using trig identities
−1+cot(x)f+tan(x)f
Use the basic trigonometric identity: tan(x)=cot(x)1​=−1+cot(x)f+cot(x)1​f
cot(x)1​f=cot(x)f​
cot(x)1​f
Multiply fractions: a⋅cb​=ca⋅b​=cot(x)1⋅f​
Multiply: 1⋅f=f=cot(x)f​
=−1+fcot(x)+cot(x)f​
−1+cot(x)f​+cot(x)f=0
Solve by substitution
−1+cot(x)f​+cot(x)f=0
Let: cot(x)=u−1+uf​+uf=0
−1+uf​+uf=0:u=2f1+1−4f2​​,u=2f1−1−4f2​​;f=0
−1+uf​+uf=0
Multiply both sides by u
−1+uf​+uf=0
Multiply both sides by u−1⋅u+uf​u+ufu=0⋅u
Simplify
−1⋅u+uf​u+ufu=0⋅u
Simplify −1⋅u:−u
−1⋅u
Multiply: 1⋅u=u=−u
Simplify uf​u:f
uf​u
Multiply fractions: a⋅cb​=ca⋅b​=ufu​
Cancel the common factor: u=f
Simplify ufu:fu2
ufu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=fu1+1
Add the numbers: 1+1=2=fu2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−u+f+fu2=0
−u+f+fu2=0
−u+f+fu2=0
Solve −u+f+fu2=0:u=2f1+1−4f2​​,u=2f1−1−4f2​​;f=0
−u+f+fu2=0
Write in the standard form ax2+bx+c=0fu2−u+f=0
Solve with the quadratic formula
fu2−u+f=0
Quadratic Equation Formula:
For a=f,b=−1,c=fu1,2​=2f−(−1)±(−1)2−4ff​​
u1,2​=2f−(−1)±(−1)2−4ff​​
Simplify (−1)2−4ff​:1−4f2​
(−1)2−4ff​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4ff=4f2
4ff
Apply exponent rule: ab⋅ac=ab+cff=f1+1=4f1+1
Add the numbers: 1+1=2=4f2
=1−4f2​
u1,2​=2f−(−1)±1−4f2​​;f=0
Separate the solutionsu1​=2f−(−1)+1−4f2​​,u2​=2f−(−1)−1−4f2​​
u=2f−(−1)+1−4f2​​:2f1+1−4f2​​
2f−(−1)+1−4f2​​
Apply rule −(−a)=a=2f1+1−4f2​​
u=2f−(−1)−1−4f2​​:2f1−1−4f2​​
2f−(−1)−1−4f2​​
Apply rule −(−a)=a=2f1−1−4f2​​
The solutions to the quadratic equation are:u=2f1+1−4f2​​,u=2f1−1−4f2​​;f=0
u=2f1+1−4f2​​,u=2f1−1−4f2​​;f=0
Substitute back u=cot(x)cot(x)=2f1+1−4f2​​,cot(x)=2f1−1−4f2​​;f=0
cot(x)=2f1+1−4f2​​,cot(x)=2f1−1−4f2​​;f=0
cot(x)=2f1+1−4f2​​:x=arccot(2f1+1−4f2​​)+πn
cot(x)=2f1+1−4f2​​
Apply trig inverse properties
cot(x)=2f1+1−4f2​​
General solutions for cot(x)=2f1+1−4f2​​cot(x)=a⇒x=arccot(a)+πnx=arccot(2f1+1−4f2​​)+πn
x=arccot(2f1+1−4f2​​)+πn
cot(x)=2f1−1−4f2​​:x=arccot(2f1−1−4f2​​)+πn
cot(x)=2f1−1−4f2​​
Apply trig inverse properties
cot(x)=2f1−1−4f2​​
General solutions for cot(x)=2f1−1−4f2​​cot(x)=a⇒x=arccot(a)+πnx=arccot(2f1−1−4f2​​)+πn
x=arccot(2f1−1−4f2​​)+πn
Combine all the solutionsx=arccot(2f1+1−4f2​​)+πn,x=arccot(2f1−1−4f2​​)+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(x)-1+tan(x)-sqrt(3)tan(x)=sqrt(3)sqrt(3)sec(2x)-2=02sin^2(θ)+3sin(θ)=0sin(x+pi/6)+sin(x-pi/6)=-(sqrt(3))/2sqrt(3)csc((2x)/3)-2=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024