Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(1-tan(x))=sec(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan(x)​=sec(x)

Solution

x=43π​+πn
+1
Degrees
x=135∘+180∘n
Solution steps
1−tan(x)​=sec(x)
Square both sides(1−tan(x)​)2=sec2(x)
Subtract sec2(x) from both sides1−tan(x)−sec2(x)=0
Rewrite using trig identities
1−sec2(x)−tan(x)
Use the Pythagorean identity: sec2(x)=tan2(x)+1sec2(x)−1=tan2(x)=−tan(x)−tan2(x)
−tan(x)−tan2(x)=0
Solve by substitution
−tan(x)−tan2(x)=0
Let: tan(x)=u−u−u2=0
−u−u2=0:u=−1,u=0
−u−u2=0
Write in the standard form ax2+bx+c=0−u2−u=0
Solve with the quadratic formula
−u2−u=0
Quadratic Equation Formula:
For a=−1,b=−1,c=0u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅0​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅0​​
(−1)2−4(−1)⋅0​=1
(−1)2−4(−1)⋅0​
Apply rule −(−a)=a=(−1)2+4⋅1⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=1+0​
Add the numbers: 1+0=1=1​
Apply rule 1​=1=1
u1,2​=2(−1)−(−1)±1​
Separate the solutionsu1​=2(−1)−(−1)+1​,u2​=2(−1)−(−1)−1​
u=2(−1)−(−1)+1​:−1
2(−1)−(−1)+1​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+1​
Add the numbers: 1+1=2=−2⋅12​
Multiply the numbers: 2⋅1=2=−22​
Apply the fraction rule: −ba​=−ba​=−22​
Apply rule aa​=1=−1
u=2(−1)−(−1)−1​:0
2(−1)−(−1)−1​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−1​
Subtract the numbers: 1−1=0=−2⋅10​
Multiply the numbers: 2⋅1=2=−20​
Apply the fraction rule: −ba​=−ba​=−20​
Apply rule a0​=0,a=0=−0
=0
The solutions to the quadratic equation are:u=−1,u=0
Substitute back u=tan(x)tan(x)=−1,tan(x)=0
tan(x)=−1,tan(x)=0
tan(x)=−1:x=43π​+πn
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
tan(x)=0:x=πn
tan(x)=0
General solutions for tan(x)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Solve x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
Combine all the solutionsx=43π​+πn,x=πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 1−tan(x)​=sec(x)
Remove the ones that don't agree with the equation.
Check the solution 43π​+πn:True
43π​+πn
Plug in n=143π​+π1
For 1−tan(x)​=sec(x)plug inx=43π​+π11−tan(43π​+π1)​=sec(43π​+π1)
Refine1.41421…=1.41421…
⇒True
Check the solution πn:False
πn
Plug in n=1π1
For 1−tan(x)​=sec(x)plug inx=π11−tan(π1)​=sec(π1)
Refine1=−1
⇒False
x=43π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)-3cos(x)=04sin^2(x)-7sin(x)-2=0cos(x)=-sin(2x)3cot(x)-sqrt(3)=0cot(3x)=(sqrt(3))/3 ,0<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(1-tan(x))=sec(x) ?

    The general solution for sqrt(1-tan(x))=sec(x) is x=(3pi)/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024