Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8sin(t)+8cos(t)=8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8sin(t)+8cos(t)=8

Solution

t=2π​+2πn,t=2πn
+1
Degrees
t=90∘+360∘n,t=0∘+360∘n
Solution steps
8sin(t)+8cos(t)=8
Subtract 8cos(t) from both sides8sin(t)=8−8cos(t)
Square both sides(8sin(t))2=(8−8cos(t))2
Subtract (8−8cos(t))2 from both sides64sin2(t)−64+128cos(t)−64cos2(t)=0
Rewrite using trig identities
−64+128cos(t)−64cos2(t)+64sin2(t)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−64+128cos(t)−64cos2(t)+64(1−cos2(t))
Simplify −64+128cos(t)−64cos2(t)+64(1−cos2(t)):128cos(t)−128cos2(t)
−64+128cos(t)−64cos2(t)+64(1−cos2(t))
Expand 64(1−cos2(t)):64−64cos2(t)
64(1−cos2(t))
Apply the distributive law: a(b−c)=ab−aca=64,b=1,c=cos2(t)=64⋅1−64cos2(t)
Multiply the numbers: 64⋅1=64=64−64cos2(t)
=−64+128cos(t)−64cos2(t)+64−64cos2(t)
Simplify −64+128cos(t)−64cos2(t)+64−64cos2(t):128cos(t)−128cos2(t)
−64+128cos(t)−64cos2(t)+64−64cos2(t)
Group like terms=128cos(t)−64cos2(t)−64cos2(t)−64+64
Add similar elements: −64cos2(t)−64cos2(t)=−128cos2(t)=128cos(t)−128cos2(t)−64+64
−64+64=0=128cos(t)−128cos2(t)
=128cos(t)−128cos2(t)
=128cos(t)−128cos2(t)
128cos(t)−128cos2(t)=0
Solve by substitution
128cos(t)−128cos2(t)=0
Let: cos(t)=u128u−128u2=0
128u−128u2=0:u=0,u=1
128u−128u2=0
Write in the standard form ax2+bx+c=0−128u2+128u=0
Solve with the quadratic formula
−128u2+128u=0
Quadratic Equation Formula:
For a=−128,b=128,c=0u1,2​=2(−128)−128±1282−4(−128)⋅0​​
u1,2​=2(−128)−128±1282−4(−128)⋅0​​
1282−4(−128)⋅0​=128
1282−4(−128)⋅0​
Apply rule −(−a)=a=1282+4⋅128⋅0​
Apply rule 0⋅a=0=1282+0​
1282+0=1282=1282​
Apply radical rule: assuming a≥0=128
u1,2​=2(−128)−128±128​
Separate the solutionsu1​=2(−128)−128+128​,u2​=2(−128)−128−128​
u=2(−128)−128+128​:0
2(−128)−128+128​
Remove parentheses: (−a)=−a=−2⋅128−128+128​
Add/Subtract the numbers: −128+128=0=−2⋅1280​
Multiply the numbers: 2⋅128=256=−2560​
Apply the fraction rule: −ba​=−ba​=−2560​
Apply rule a0​=0,a=0=−0
=0
u=2(−128)−128−128​:1
2(−128)−128−128​
Remove parentheses: (−a)=−a=−2⋅128−128−128​
Subtract the numbers: −128−128=−256=−2⋅128−256​
Multiply the numbers: 2⋅128=256=−256−256​
Apply the fraction rule: −b−a​=ba​=256256​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=0,u=1
Substitute back u=cos(t)cos(t)=0,cos(t)=1
cos(t)=0,cos(t)=1
cos(t)=0:t=2π​+2πn,t=23π​+2πn
cos(t)=0
General solutions for cos(t)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
t=2π​+2πn,t=23π​+2πn
t=2π​+2πn,t=23π​+2πn
cos(t)=1:t=2πn
cos(t)=1
General solutions for cos(t)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
t=0+2πn
t=0+2πn
Solve t=0+2πn:t=2πn
t=0+2πn
0+2πn=2πnt=2πn
t=2πn
Combine all the solutionst=2π​+2πn,t=23π​+2πn,t=2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 8sin(t)+8cos(t)=8
Remove the ones that don't agree with the equation.
Check the solution 2π​+2πn:True
2π​+2πn
Plug in n=12π​+2π1
For 8sin(t)+8cos(t)=8plug int=2π​+2π18sin(2π​+2π1)+8cos(2π​+2π1)=8
Refine8=8
⇒True
Check the solution 23π​+2πn:False
23π​+2πn
Plug in n=123π​+2π1
For 8sin(t)+8cos(t)=8plug int=23π​+2π18sin(23π​+2π1)+8cos(23π​+2π1)=8
Refine−8=8
⇒False
Check the solution 2πn:True
2πn
Plug in n=12π1
For 8sin(t)+8cos(t)=8plug int=2π18sin(2π1)+8cos(2π1)=8
Refine8=8
⇒True
t=2π​+2πn,t=2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5sin(pi/3 x)=24cos^2(x)-5cos(x)+1=0cos(x+60)=sin(x)csc^2(x)=2cot^2(x)2sin^2(x)+sin(2x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 8sin(t)+8cos(t)=8 ?

    The general solution for 8sin(t)+8cos(t)=8 is t= pi/2+2pin,t=2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024