Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x)*tan(x)+5sin(x)=-2cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)⋅tan(x)+5sin(x)=−2cos(x)

Solution

x=−0.46364…+πn,x=−1.10714…+πn
+1
Degrees
x=−26.56505…∘+180∘n,x=−63.43494…∘+180∘n
Solution steps
2sin(x)tan(x)+5sin(x)=−2cos(x)
Subtract −2cos(x) from both sides2sin(x)tan(x)+5sin(x)+2cos(x)=0
Express with sin, cos
2cos(x)+5sin(x)+2sin(x)tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=2cos(x)+5sin(x)+2sin(x)cos(x)sin(x)​
Simplify 2cos(x)+5sin(x)+2sin(x)cos(x)sin(x)​:cos(x)2cos2(x)+5sin(x)cos(x)+2sin2(x)​
2cos(x)+5sin(x)+2sin(x)cos(x)sin(x)​
2sin(x)cos(x)sin(x)​=cos(x)2sin2(x)​
2sin(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅2sin(x)​
sin(x)⋅2sin(x)=2sin2(x)
sin(x)⋅2sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2sin1+1(x)
Add the numbers: 1+1=2=2sin2(x)
=cos(x)2sin2(x)​
=2cos(x)+5sin(x)+cos(x)2sin2(x)​
Convert element to fraction: 2cos(x)=cos(x)2cos(x)cos(x)​,5sin(x)=cos(x)5sin(x)cos(x)​=cos(x)2cos(x)cos(x)​+cos(x)5sin(x)cos(x)​+cos(x)2sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)2cos(x)cos(x)+5sin(x)cos(x)+2sin2(x)​
2cos(x)cos(x)+5sin(x)cos(x)+2sin2(x)=2cos2(x)+5sin(x)cos(x)+2sin2(x)
2cos(x)cos(x)+5sin(x)cos(x)+2sin2(x)
2cos(x)cos(x)=2cos2(x)
2cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2cos1+1(x)
Add the numbers: 1+1=2=2cos2(x)
=2cos2(x)+5sin(x)cos(x)+2sin2(x)
=cos(x)2cos2(x)+5sin(x)cos(x)+2sin2(x)​
=cos(x)2cos2(x)+5sin(x)cos(x)+2sin2(x)​
cos(x)2cos2(x)+2sin2(x)+5cos(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=02cos2(x)+2sin2(x)+5cos(x)sin(x)=0
Factor 2cos2(x)+2sin2(x)+5cos(x)sin(x):(2sin(x)+cos(x))(sin(x)+2cos(x))
2cos2(x)+2sin2(x)+5cos(x)sin(x)
Break the expression into groups
2sin2(x)+5sin(x)cos(x)+2cos2(x)
Definition
Factors of 4:1,2,4
4
Divisors (Factors)
Find the Prime factors of 4:2,2
4
4divides by 24=2⋅2=2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2
Add the prime factors: 2
Add 1 and the number 4 itself1,4
The factors of 41,2,4
For every two factors such that u∗v=4,check if u+v=5
Check u=1,v=4:u∗v=4,u+v=5⇒TrueCheck u=2,v=2:u∗v=4,u+v=4⇒False
u=1,v=4
Group into (ax2+uxy)+(vxy+cy2)(2sin2(x)+sin(x)cos(x))+(4sin(x)cos(x)+2cos2(x))
=(2sin2(x)+sin(x)cos(x))+(4sin(x)cos(x)+2cos2(x))
Factor out sin(x)from 2sin2(x)+sin(x)cos(x):sin(x)(2sin(x)+cos(x))
2sin2(x)+sin(x)cos(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=2sin(x)sin(x)+sin(x)cos(x)
Factor out common term sin(x)=sin(x)(2sin(x)+cos(x))
Factor out 2cos(x)from 4sin(x)cos(x)+2cos2(x):2cos(x)(2sin(x)+cos(x))
4sin(x)cos(x)+2cos2(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=4sin(x)cos(x)+2cos(x)cos(x)
Rewrite 4 as 2⋅2=2⋅2sin(x)cos(x)+2cos(x)cos(x)
Factor out common term 2cos(x)=2cos(x)(2sin(x)+cos(x))
=sin(x)(2sin(x)+cos(x))+2cos(x)(2sin(x)+cos(x))
Factor out common term 2sin(x)+cos(x)=(2sin(x)+cos(x))(sin(x)+2cos(x))
(2sin(x)+cos(x))(sin(x)+2cos(x))=0
Solving each part separately2sin(x)+cos(x)=0orsin(x)+2cos(x)=0
2sin(x)+cos(x)=0:x=arctan(−21​)+πn
2sin(x)+cos(x)=0
Rewrite using trig identities
2sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)2sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)2sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2tan(x)+1=0
2tan(x)+1=0
Move 1to the right side
2tan(x)+1=0
Subtract 1 from both sides2tan(x)+1−1=0−1
Simplify2tan(x)=−1
2tan(x)=−1
Divide both sides by 2
2tan(x)=−1
Divide both sides by 222tan(x)​=2−1​
Simplifytan(x)=−21​
tan(x)=−21​
Apply trig inverse properties
tan(x)=−21​
General solutions for tan(x)=−21​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−21​)+πn
x=arctan(−21​)+πn
sin(x)+2cos(x)=0:x=arctan(−2)+πn
sin(x)+2cos(x)=0
Rewrite using trig identities
sin(x)+2cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+2cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+2=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+2=0
tan(x)+2=0
Move 2to the right side
tan(x)+2=0
Subtract 2 from both sidestan(x)+2−2=0−2
Simplifytan(x)=−2
tan(x)=−2
Apply trig inverse properties
tan(x)=−2
General solutions for tan(x)=−2tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−2)+πn
x=arctan(−2)+πn
Combine all the solutionsx=arctan(−21​)+πn,x=arctan(−2)+πn
Show solutions in decimal formx=−0.46364…+πn,x=−1.10714…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cot(x)sin(x)+cot(x)=02sin(x)-(2+sqrt(3))=-sqrt(3)csc(x)7cos^2(θ)+6sin(θ)-10=-43(2sin(x)-cos(x))=2(sin(x)-3cos(x))0=-2sin(x)+cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(x)*tan(x)+5sin(x)=-2cos(x) ?

    The general solution for 2sin(x)*tan(x)+5sin(x)=-2cos(x) is x=-0.46364…+pin,x=-1.10714…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024