Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6sec(2x)+3tan(2x)-9=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6sec(2x)+3tan(2x)−9=0

Solution

x=20.56432…​+πn,x=−21.20782…​+πn
+1
Degrees
x=16.16676…∘+180∘n,x=−34.60171…∘+180∘n
Solution steps
6sec(2x)+3tan(2x)−9=0
Express with sin, cos6⋅cos(2x)1​+3⋅cos(2x)sin(2x)​−9=0
Simplify 6⋅cos(2x)1​+3⋅cos(2x)sin(2x)​−9:cos(2x)6+3sin(2x)−9cos(2x)​
6⋅cos(2x)1​+3⋅cos(2x)sin(2x)​−9
6⋅cos(2x)1​=cos(2x)6​
6⋅cos(2x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2x)1⋅6​
Multiply the numbers: 1⋅6=6=cos(2x)6​
3⋅cos(2x)sin(2x)​=cos(2x)3sin(2x)​
3⋅cos(2x)sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2x)sin(2x)⋅3​
=cos(2x)6​+cos(2x)3sin(2x)​−9
Combine the fractions cos(2x)6​+cos(2x)3sin(2x)​:cos(2x)6+3sin(2x)​
Apply rule ca​±cb​=ca±b​=cos(2x)6+3sin(2x)​
=cos(2x)3sin(2x)+6​−9
Convert element to fraction: 9=cos(2x)9cos(2x)​=cos(2x)6+sin(2x)⋅3​−cos(2x)9cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)6+sin(2x)⋅3−9cos(2x)​
cos(2x)6+3sin(2x)−9cos(2x)​=0
g(x)f(x)​=0⇒f(x)=06+3sin(2x)−9cos(2x)=0
Add 9cos(2x) to both sides6+3sin(2x)=9cos(2x)
Square both sides(6+3sin(2x))2=(9cos(2x))2
Subtract (9cos(2x))2 from both sides(6+3sin(2x))2−81cos2(2x)=0
Rewrite using trig identities
(6+3sin(2x))2−81cos2(2x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(6+3sin(2x))2−81(1−sin2(2x))
Simplify (6+3sin(2x))2−81(1−sin2(2x)):90sin2(2x)+36sin(2x)−45
(6+3sin(2x))2−81(1−sin2(2x))
(6+3sin(2x))2:36+36sin(2x)+9sin2(2x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=6,b=3sin(2x)
=62+2⋅6⋅3sin(2x)+(3sin(2x))2
Simplify 62+2⋅6⋅3sin(2x)+(3sin(2x))2:36+36sin(2x)+9sin2(2x)
62+2⋅6⋅3sin(2x)+(3sin(2x))2
62=36
62
62=36=36
2⋅6⋅3sin(2x)=36sin(2x)
2⋅6⋅3sin(2x)
Multiply the numbers: 2⋅6⋅3=36=36sin(2x)
(3sin(2x))2=9sin2(2x)
(3sin(2x))2
Apply exponent rule: (a⋅b)n=anbn=32sin2(2x)
32=9=9sin2(2x)
=36+36sin(2x)+9sin2(2x)
=36+36sin(2x)+9sin2(2x)
=36+36sin(2x)+9sin2(2x)−81(1−sin2(2x))
Expand −81(1−sin2(2x)):−81+81sin2(2x)
−81(1−sin2(2x))
Apply the distributive law: a(b−c)=ab−aca=−81,b=1,c=sin2(2x)=−81⋅1−(−81)sin2(2x)
Apply minus-plus rules−(−a)=a=−81⋅1+81sin2(2x)
Multiply the numbers: 81⋅1=81=−81+81sin2(2x)
=36+36sin(2x)+9sin2(2x)−81+81sin2(2x)
Simplify 36+36sin(2x)+9sin2(2x)−81+81sin2(2x):90sin2(2x)+36sin(2x)−45
36+36sin(2x)+9sin2(2x)−81+81sin2(2x)
Group like terms=36sin(2x)+9sin2(2x)+81sin2(2x)+36−81
Add similar elements: 9sin2(2x)+81sin2(2x)=90sin2(2x)=36sin(2x)+90sin2(2x)+36−81
Add/Subtract the numbers: 36−81=−45=90sin2(2x)+36sin(2x)−45
=90sin2(2x)+36sin(2x)−45
=90sin2(2x)+36sin(2x)−45
−45+36sin(2x)+90sin2(2x)=0
Solve by substitution
−45+36sin(2x)+90sin2(2x)=0
Let: sin(2x)=u−45+36u+90u2=0
−45+36u+90u2=0:u=10−2+36​​,u=−102+36​​
−45+36u+90u2=0
Write in the standard form ax2+bx+c=090u2+36u−45=0
Solve with the quadratic formula
90u2+36u−45=0
Quadratic Equation Formula:
For a=90,b=36,c=−45u1,2​=2⋅90−36±362−4⋅90(−45)​​
u1,2​=2⋅90−36±362−4⋅90(−45)​​
362−4⋅90(−45)​=546​
362−4⋅90(−45)​
Apply rule −(−a)=a=362+4⋅90⋅45​
Multiply the numbers: 4⋅90⋅45=16200=362+16200​
362=1296=1296+16200​
Add the numbers: 1296+16200=17496=17496​
Prime factorization of 17496:23⋅37
17496
17496divides by 217496=8748⋅2=2⋅8748
8748divides by 28748=4374⋅2=2⋅2⋅4374
4374divides by 24374=2187⋅2=2⋅2⋅2⋅2187
2187divides by 32187=729⋅3=2⋅2⋅2⋅3⋅729
729divides by 3729=243⋅3=2⋅2⋅2⋅3⋅3⋅243
243divides by 3243=81⋅3=2⋅2⋅2⋅3⋅3⋅3⋅81
81divides by 381=27⋅3=2⋅2⋅2⋅3⋅3⋅3⋅3⋅27
27divides by 327=9⋅3=2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3
=23⋅37
=37⋅23​
Apply exponent rule: ab+c=ab⋅ac=36⋅22⋅2⋅3​
Apply radical rule: =22​36​2⋅3​
Apply radical rule: 22​=2=236​2⋅3​
Apply radical rule: 36​=326​=33=33⋅22⋅3​
Refine=546​
u1,2​=2⋅90−36±546​​
Separate the solutionsu1​=2⋅90−36+546​​,u2​=2⋅90−36−546​​
u=2⋅90−36+546​​:10−2+36​​
2⋅90−36+546​​
Multiply the numbers: 2⋅90=180=180−36+546​​
Factor −36+546​:18(−2+36​)
−36+546​
Rewrite as=−18⋅2+18⋅36​
Factor out common term 18=18(−2+36​)
=18018(−2+36​)​
Cancel the common factor: 18=10−2+36​​
u=2⋅90−36−546​​:−102+36​​
2⋅90−36−546​​
Multiply the numbers: 2⋅90=180=180−36−546​​
Factor −36−546​:−18(2+36​)
−36−546​
Rewrite as=−18⋅2−18⋅36​
Factor out common term 18=−18(2+36​)
=−18018(2+36​)​
Cancel the common factor: 18=−102+36​​
The solutions to the quadratic equation are:u=10−2+36​​,u=−102+36​​
Substitute back u=sin(2x)sin(2x)=10−2+36​​,sin(2x)=−102+36​​
sin(2x)=10−2+36​​,sin(2x)=−102+36​​
sin(2x)=10−2+36​​:x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn
sin(2x)=10−2+36​​
Apply trig inverse properties
sin(2x)=10−2+36​​
General solutions for sin(2x)=10−2+36​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(10−2+36​​)+2πn,2x=π−arcsin(10−2+36​​)+2πn
2x=arcsin(10−2+36​​)+2πn,2x=π−arcsin(10−2+36​​)+2πn
Solve 2x=arcsin(10−2+36​​)+2πn:x=2arcsin(10−2+36​​)​+πn
2x=arcsin(10−2+36​​)+2πn
Divide both sides by 2
2x=arcsin(10−2+36​​)+2πn
Divide both sides by 222x​=2arcsin(10−2+36​​)​+22πn​
Simplifyx=2arcsin(10−2+36​​)​+πn
x=2arcsin(10−2+36​​)​+πn
Solve 2x=π−arcsin(10−2+36​​)+2πn:x=2π​−2arcsin(10−2+36​​)​+πn
2x=π−arcsin(10−2+36​​)+2πn
Divide both sides by 2
2x=π−arcsin(10−2+36​​)+2πn
Divide both sides by 222x​=2π​−2arcsin(10−2+36​​)​+22πn​
Simplifyx=2π​−2arcsin(10−2+36​​)​+πn
x=2π​−2arcsin(10−2+36​​)​+πn
x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn
sin(2x)=−102+36​​:x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
sin(2x)=−102+36​​
Apply trig inverse properties
sin(2x)=−102+36​​
General solutions for sin(2x)=−102+36​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−102+36​​)+2πn,2x=π+arcsin(102+36​​)+2πn
2x=arcsin(−102+36​​)+2πn,2x=π+arcsin(102+36​​)+2πn
Solve 2x=arcsin(−102+36​​)+2πn:x=−2arcsin(102+36​​)​+πn
2x=arcsin(−102+36​​)+2πn
Simplify arcsin(−102+36​​)+2πn:−arcsin(102+36​​)+2πn
arcsin(−102+36​​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−102+36​​)=−arcsin(102+36​​)=−arcsin(102+36​​)+2πn
2x=−arcsin(102+36​​)+2πn
Divide both sides by 2
2x=−arcsin(102+36​​)+2πn
Divide both sides by 222x​=−2arcsin(102+36​​)​+22πn​
Simplifyx=−2arcsin(102+36​​)​+πn
x=−2arcsin(102+36​​)​+πn
Solve 2x=π+arcsin(102+36​​)+2πn:x=2π​+2arcsin(102+36​​)​+πn
2x=π+arcsin(102+36​​)+2πn
Divide both sides by 2
2x=π+arcsin(102+36​​)+2πn
Divide both sides by 222x​=2π​+2arcsin(102+36​​)​+22πn​
Simplifyx=2π​+2arcsin(102+36​​)​+πn
x=2π​+2arcsin(102+36​​)​+πn
x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
Combine all the solutionsx=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn,x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 6sec(2x)+3tan(2x)−9=0
Remove the ones that don't agree with the equation.
Check the solution 2arcsin(10−2+36​​)​+πn:True
2arcsin(10−2+36​​)​+πn
Plug in n=12arcsin(10−2+36​​)​+π1
For 6sec(2x)+3tan(2x)−9=0plug inx=2arcsin(10−2+36​​)​+π16sec​2​2arcsin(10−2+36​​)​+π1​​+3tan​2​2arcsin(10−2+36​​)​+π1​​−9=0
Refine0=0
⇒True
Check the solution 2π​−2arcsin(10−2+36​​)​+πn:False
2π​−2arcsin(10−2+36​​)​+πn
Plug in n=12π​−2arcsin(10−2+36​​)​+π1
For 6sec(2x)+3tan(2x)−9=0plug inx=2π​−2arcsin(10−2+36​​)​+π16sec​2​2π​−2arcsin(10−2+36​​)​+π1​​+3tan​2​2π​−2arcsin(10−2+36​​)​+π1​​−9=0
Refine−18=0
⇒False
Check the solution −2arcsin(102+36​​)​+πn:True
−2arcsin(102+36​​)​+πn
Plug in n=1−2arcsin(102+36​​)​+π1
For 6sec(2x)+3tan(2x)−9=0plug inx=−2arcsin(102+36​​)​+π16sec​2​−2arcsin(102+36​​)​+π1​​+3tan​2​−2arcsin(102+36​​)​+π1​​−9=0
Refine0=0
⇒True
Check the solution 2π​+2arcsin(102+36​​)​+πn:False
2π​+2arcsin(102+36​​)​+πn
Plug in n=12π​+2arcsin(102+36​​)​+π1
For 6sec(2x)+3tan(2x)−9=0plug inx=2π​+2arcsin(102+36​​)​+π16sec​2​2π​+2arcsin(102+36​​)​+π1​​+3tan​2​2π​+2arcsin(102+36​​)​+π1​​−9=0
Refine−18=0
⇒False
x=2arcsin(10−2+36​​)​+πn,x=−2arcsin(102+36​​)​+πn
Show solutions in decimal formx=20.56432…​+πn,x=−21.20782…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos^2(x)+3=4,0<= x<2pitan(2x)=3sqrt(3)=tan(x)12tan(θ)+5=5tan(θ)+5sin^2(x)+cos^2(x)-1+cos(x)-sin(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 6sec(2x)+3tan(2x)-9=0 ?

    The general solution for 6sec(2x)+3tan(2x)-9=0 is x=(0.56432…)/2+pin,x=-(1.20782…)/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024