Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2t)+tan(t)=1-tan(2t)tan(t)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2t)+tan(t)=1−tan(2t)tan(t)

Solution

t=1.30899…+πn,t=0.26179…+πn
+1
Degrees
t=75∘+180∘n,t=15∘+180∘n
Solution steps
tan(2t)+tan(t)=1−tan(2t)tan(t)
Subtract 1−tan(2t)tan(t) from both sidestan(2t)+tan(t)−1+tan(2t)tan(t)=0
Rewrite using trig identities
−1+tan(2t)+tan(t)+tan(2t)tan(t)
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=−1+1−tan2(t)2tan(t)​+tan(t)+1−tan2(t)2tan(t)​tan(t)
Simplify −1+1−tan2(t)2tan(t)​+tan(t)+1−tan2(t)2tan(t)​tan(t):tan(t)−1−3tan(t)+tan2(t)​−1
−1+1−tan2(t)2tan(t)​+tan(t)+1−tan2(t)2tan(t)​tan(t)
1−tan2(t)2tan(t)​tan(t)=1−tan2(t)2tan2(t)​
1−tan2(t)2tan(t)​tan(t)
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(t)2tan(t)tan(t)​
2tan(t)tan(t)=2tan2(t)
2tan(t)tan(t)
Apply exponent rule: ab⋅ac=ab+ctan(t)tan(t)=tan1+1(t)=2tan1+1(t)
Add the numbers: 1+1=2=2tan2(t)
=1−tan2(t)2tan2(t)​
=−1+−tan2(t)+12tan(t)​+tan(t)+−tan2(t)+12tan2(t)​
Combine the fractions −tan2(t)+12tan(t)​+−tan2(t)+12tan2(t)​:−tan(t)−12tan(t)​
Apply rule ca​±cb​=ca±b​=1−tan2(t)2tan(t)+2tan2(t)​
Factor out common term 2tan(t):2tan(t)(tan(t)+1)
2tan2(t)+2tan(t)
Apply exponent rule: ab+c=abactan2(t)=tan(t)tan(t)=2tan(t)tan(t)+2tan(t)
Factor out common term 2tan(t)=2tan(t)(tan(t)+1)
=1−tan2(t)2tan(t)(tan(t)+1)​
Factor 1−tan2(t):−(tan(t)+1)(tan(t)−1)
1−tan2(t)
Factor out common term −1=−(tan2(t)−1)
Factor tan2(t)−1:(tan(t)+1)(tan(t)−1)
tan2(t)−1
Rewrite 1 as 12=tan2(t)−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)tan2(t)−12=(tan(t)+1)(tan(t)−1)=(tan(t)+1)(tan(t)−1)
=−(tan(t)+1)(tan(t)−1)
=−(tan(t)+1)(tan(t)−1)2tan(t)(tan(t)+1)​
Cancel the common factor: tan(t)+1=−tan(t)−12tan(t)​
=−1−tan(t)−12tan(t)​+tan(t)
Combine the fractions −tan(t)−12tan(t)​+tan(t):tan(t)−1−3tan(t)+tan2(t)​
−tan(t)−12tan(t)​+tan(t)
Convert element to fraction: tan(t)=tan(t)−1tan(t)(tan(t)−1)​=−tan(t)−12tan(t)​+tan(t)−1tan(t)(tan(t)−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=tan(t)−1−2tan(t)+tan(t)(tan(t)−1)​
Expand −2tan(t)+tan(t)(tan(t)−1):−3tan(t)+tan2(t)
−2tan(t)+tan(t)(tan(t)−1)
Expand tan(t)(tan(t)−1):tan2(t)−tan(t)
tan(t)(tan(t)−1)
Apply the distributive law: a(b−c)=ab−aca=tan(t),b=tan(t),c=1=tan(t)tan(t)−tan(t)⋅1
=tan(t)tan(t)−1⋅tan(t)
Simplify tan(t)tan(t)−1⋅tan(t):tan2(t)−tan(t)
tan(t)tan(t)−1⋅tan(t)
tan(t)tan(t)=tan2(t)
tan(t)tan(t)
Apply exponent rule: ab⋅ac=ab+ctan(t)tan(t)=tan1+1(t)=tan1+1(t)
Add the numbers: 1+1=2=tan2(t)
1⋅tan(t)=tan(t)
1⋅tan(t)
Multiply: 1⋅tan(t)=tan(t)=tan(t)
=tan2(t)−tan(t)
=tan2(t)−tan(t)
=−2tan(t)+tan2(t)−tan(t)
Add similar elements: −2tan(t)−tan(t)=−3tan(t)=−3tan(t)+tan2(t)
=tan(t)−1−3tan(t)+tan2(t)​
=tan(t)−1tan2(t)−3tan(t)​−1
=tan(t)−1−3tan(t)+tan2(t)​−1
−1+−1+tan(t)tan2(t)−3tan(t)​=0
Solve by substitution
−1+−1+tan(t)tan2(t)−3tan(t)​=0
Let: tan(t)=u−1+−1+uu2−3u​=0
−1+−1+uu2−3u​=0:u=2+3​,u=2−3​
−1+−1+uu2−3u​=0
Multiply both sides by −1+u
−1+−1+uu2−3u​=0
Multiply both sides by −1+u−1⋅(−1+u)+−1+uu2−3u​(−1+u)=0⋅(−1+u)
Simplify
−1⋅(−1+u)+−1+uu2−3u​(−1+u)=0⋅(−1+u)
Simplify −1⋅(−1+u):−(−1+u)
−1⋅(−1+u)
Multiply: 1⋅(−1+u)=(−1+u)=−(u−1)
Simplify −1+uu2−3u​(−1+u):u2−3u
−1+uu2−3u​(−1+u)
Multiply fractions: a⋅cb​=ca⋅b​=−1+u(u2−3u)(−1+u)​
Cancel the common factor: −1+u=u2−3u
Simplify 0⋅(−1+u):0
0⋅(−1+u)
Apply rule 0⋅a=0=0
−(−1+u)+u2−3u=0
−(−1+u)+u2−3u=0
−(−1+u)+u2−3u=0
Solve −(−1+u)+u2−3u=0:u=2+3​,u=2−3​
−(−1+u)+u2−3u=0
Expand −(−1+u)+u2−3u:u2−4u+1
−(−1+u)+u2−3u
−(−1+u):1−u
−(−1+u)
Distribute parentheses=−(−1)−(u)
Apply minus-plus rules−(−a)=a,−(a)=−a=1−u
=1−u+u2−3u
Simplify 1−u+u2−3u:u2−4u+1
1−u+u2−3u
Group like terms=u2−u−3u+1
Add similar elements: −u−3u=−4u=u2−4u+1
=u2−4u+1
u2−4u+1=0
Solve with the quadratic formula
u2−4u+1=0
Quadratic Equation Formula:
For a=1,b=−4,c=1u1,2​=2⋅1−(−4)±(−4)2−4⋅1⋅1​​
u1,2​=2⋅1−(−4)±(−4)2−4⋅1⋅1​​
(−4)2−4⋅1⋅1​=23​
(−4)2−4⋅1⋅1​
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42−4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=42−4​
42=16=16−4​
Subtract the numbers: 16−4=12=12​
Prime factorization of 12:22⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
=22⋅3
=22⋅3​
Apply radical rule: =3​22​
Apply radical rule: 22​=2=23​
u1,2​=2⋅1−(−4)±23​​
Separate the solutionsu1​=2⋅1−(−4)+23​​,u2​=2⋅1−(−4)−23​​
u=2⋅1−(−4)+23​​:2+3​
2⋅1−(−4)+23​​
Apply rule −(−a)=a=2⋅14+23​​
Multiply the numbers: 2⋅1=2=24+23​​
Factor 4+23​:2(2+3​)
4+23​
Rewrite as=2⋅2+23​
Factor out common term 2=2(2+3​)
=22(2+3​)​
Divide the numbers: 22​=1=2+3​
u=2⋅1−(−4)−23​​:2−3​
2⋅1−(−4)−23​​
Apply rule −(−a)=a=2⋅14−23​​
Multiply the numbers: 2⋅1=2=24−23​​
Factor 4−23​:2(2−3​)
4−23​
Rewrite as=2⋅2−23​
Factor out common term 2=2(2−3​)
=22(2−3​)​
Divide the numbers: 22​=1=2−3​
The solutions to the quadratic equation are:u=2+3​,u=2−3​
u=2+3​,u=2−3​
Verify Solutions
Find undefined (singularity) points:u=1
Take the denominator(s) of −1+−1+uu2−3u​ and compare to zero
Solve −1+u=0:u=1
−1+u=0
Move 1to the right side
−1+u=0
Add 1 to both sides−1+u+1=0+1
Simplifyu=1
u=1
The following points are undefinedu=1
Combine undefined points with solutions:
u=2+3​,u=2−3​
Substitute back u=tan(t)tan(t)=2+3​,tan(t)=2−3​
tan(t)=2+3​,tan(t)=2−3​
tan(t)=2+3​:t=arctan(2+3​)+πn
tan(t)=2+3​
Apply trig inverse properties
tan(t)=2+3​
General solutions for tan(t)=2+3​tan(x)=a⇒x=arctan(a)+πnt=arctan(2+3​)+πn
t=arctan(2+3​)+πn
tan(t)=2−3​:t=arctan(2−3​)+πn
tan(t)=2−3​
Apply trig inverse properties
tan(t)=2−3​
General solutions for tan(t)=2−3​tan(x)=a⇒x=arctan(a)+πnt=arctan(2−3​)+πn
t=arctan(2−3​)+πn
Combine all the solutionst=arctan(2+3​)+πn,t=arctan(2−3​)+πn
Show solutions in decimal formt=1.30899…+πn,t=0.26179…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^3(x)-cos(x)=0-2cos(2x)=sqrt(3)(tan(x)-1)(2sin(x)-sqrt(3))=0tan(θ)(1+tan^2(θ))=0tan(x)=9

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2t)+tan(t)=1-tan(2t)tan(t) ?

    The general solution for tan(2t)+tan(t)=1-tan(2t)tan(t) is t=1.30899…+pin,t=0.26179…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024