Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(θ/2-pi/6)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(2θ​−6π​)−1=0

Solution

θ=4πn+65π​,θ=4πn+611π​,θ=4πn+617π​,θ=4πn+623π​
+1
Degrees
θ=150∘+720∘n,θ=330∘+720∘n,θ=510∘+720∘n,θ=690∘+720∘n
Solution steps
2sin2(2θ​−6π​)−1=0
Solve by substitution
2sin2(2θ​−6π​)−1=0
Let: sin(2θ​−6π​)=u2u2−1=0
2u2−1=0:u=21​​,u=−21​​
2u2−1=0
Move 1to the right side
2u2−1=0
Add 1 to both sides2u2−1+1=0+1
Simplify2u2=1
2u2=1
Divide both sides by 2
2u2=1
Divide both sides by 222u2​=21​
Simplifyu2=21​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Substitute back u=sin(2θ​−6π​)sin(2θ​−6π​)=21​​,sin(2θ​−6π​)=−21​​
sin(2θ​−6π​)=21​​,sin(2θ​−6π​)=−21​​
sin(2θ​−6π​)=21​​:θ=4πn+65π​,θ=4πn+611π​
sin(2θ​−6π​)=21​​
General solutions for sin(2θ​−6π​)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ​−6π​=4π​+2πn,2θ​−6π​=43π​+2πn
2θ​−6π​=4π​+2πn,2θ​−6π​=43π​+2πn
Solve 2θ​−6π​=4π​+2πn:θ=4πn+65π​
2θ​−6π​=4π​+2πn
Move 6π​to the right side
2θ​−6π​=4π​+2πn
Add 6π​ to both sides2θ​−6π​+6π​=4π​+2πn+6π​
Simplify
2θ​−6π​+6π​=4π​+2πn+6π​
Simplify 2θ​−6π​+6π​:2θ​
2θ​−6π​+6π​
Add similar elements: −6π​+6π​=0
=2θ​
Simplify 4π​+2πn+6π​:2πn+125π​
4π​+2πn+6π​
Group like terms=2πn+4π​+6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=12π3​+12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3+π2​
Add similar elements: 3π+2π=5π=2πn+125π​
2θ​=2πn+125π​
2θ​=2πn+125π​
2θ​=2πn+125π​
Multiply both sides by 2
2θ​=2πn+125π​
Multiply both sides by 222θ​=2⋅2πn+2⋅125π​
Simplify
22θ​=2⋅2πn+2⋅125π​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅2πn+2⋅125π​:4πn+65π​
2⋅2πn+2⋅125π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅125π​=65π​
2⋅125π​
Multiply fractions: a⋅cb​=ca⋅b​=125π2​
Multiply the numbers: 5⋅2=10=1210π​
Cancel the common factor: 2=65π​
=4πn+65π​
θ=4πn+65π​
θ=4πn+65π​
θ=4πn+65π​
Solve 2θ​−6π​=43π​+2πn:θ=4πn+611π​
2θ​−6π​=43π​+2πn
Move 6π​to the right side
2θ​−6π​=43π​+2πn
Add 6π​ to both sides2θ​−6π​+6π​=43π​+2πn+6π​
Simplify
2θ​−6π​+6π​=43π​+2πn+6π​
Simplify 2θ​−6π​+6π​:2θ​
2θ​−6π​+6π​
Add similar elements: −6π​+6π​=0
=2θ​
Simplify 43π​+2πn+6π​:2πn+1211π​
43π​+2πn+6π​
Group like terms=2πn+6π​+43π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 43π​:multiply the denominator and numerator by 343π​=4⋅33π3​=129π​
=12π2​+129π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π2+9π​
Add similar elements: 2π+9π=11π=2πn+1211π​
2θ​=2πn+1211π​
2θ​=2πn+1211π​
2θ​=2πn+1211π​
Multiply both sides by 2
2θ​=2πn+1211π​
Multiply both sides by 222θ​=2⋅2πn+2⋅1211π​
Simplify
22θ​=2⋅2πn+2⋅1211π​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅2πn+2⋅1211π​:4πn+611π​
2⋅2πn+2⋅1211π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅1211π​=611π​
2⋅1211π​
Multiply fractions: a⋅cb​=ca⋅b​=1211π2​
Multiply the numbers: 11⋅2=22=1222π​
Cancel the common factor: 2=611π​
=4πn+611π​
θ=4πn+611π​
θ=4πn+611π​
θ=4πn+611π​
θ=4πn+65π​,θ=4πn+611π​
sin(2θ​−6π​)=−21​​:θ=4πn+617π​,θ=4πn+623π​
sin(2θ​−6π​)=−21​​
General solutions for sin(2θ​−6π​)=−21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ​−6π​=45π​+2πn,2θ​−6π​=47π​+2πn
2θ​−6π​=45π​+2πn,2θ​−6π​=47π​+2πn
Solve 2θ​−6π​=45π​+2πn:θ=4πn+617π​
2θ​−6π​=45π​+2πn
Move 6π​to the right side
2θ​−6π​=45π​+2πn
Add 6π​ to both sides2θ​−6π​+6π​=45π​+2πn+6π​
Simplify
2θ​−6π​+6π​=45π​+2πn+6π​
Simplify 2θ​−6π​+6π​:2θ​
2θ​−6π​+6π​
Add similar elements: −6π​+6π​=0
=2θ​
Simplify 45π​+2πn+6π​:2πn+1217π​
45π​+2πn+6π​
Group like terms=2πn+6π​+45π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 45π​:multiply the denominator and numerator by 345π​=4⋅35π3​=1215π​
=12π2​+1215π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π2+15π​
Add similar elements: 2π+15π=17π=2πn+1217π​
2θ​=2πn+1217π​
2θ​=2πn+1217π​
2θ​=2πn+1217π​
Multiply both sides by 2
2θ​=2πn+1217π​
Multiply both sides by 222θ​=2⋅2πn+2⋅1217π​
Simplify
22θ​=2⋅2πn+2⋅1217π​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅2πn+2⋅1217π​:4πn+617π​
2⋅2πn+2⋅1217π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅1217π​=617π​
2⋅1217π​
Multiply fractions: a⋅cb​=ca⋅b​=1217π2​
Multiply the numbers: 17⋅2=34=1234π​
Cancel the common factor: 2=617π​
=4πn+617π​
θ=4πn+617π​
θ=4πn+617π​
θ=4πn+617π​
Solve 2θ​−6π​=47π​+2πn:θ=4πn+623π​
2θ​−6π​=47π​+2πn
Move 6π​to the right side
2θ​−6π​=47π​+2πn
Add 6π​ to both sides2θ​−6π​+6π​=47π​+2πn+6π​
Simplify
2θ​−6π​+6π​=47π​+2πn+6π​
Simplify 2θ​−6π​+6π​:2θ​
2θ​−6π​+6π​
Add similar elements: −6π​+6π​=0
=2θ​
Simplify 47π​+2πn+6π​:2πn+1223π​
47π​+2πn+6π​
Group like terms=2πn+6π​+47π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 47π​:multiply the denominator and numerator by 347π​=4⋅37π3​=1221π​
=12π2​+1221π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π2+21π​
Add similar elements: 2π+21π=23π=2πn+1223π​
2θ​=2πn+1223π​
2θ​=2πn+1223π​
2θ​=2πn+1223π​
Multiply both sides by 2
2θ​=2πn+1223π​
Multiply both sides by 222θ​=2⋅2πn+2⋅1223π​
Simplify
22θ​=2⋅2πn+2⋅1223π​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅2πn+2⋅1223π​:4πn+623π​
2⋅2πn+2⋅1223π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅1223π​=623π​
2⋅1223π​
Multiply fractions: a⋅cb​=ca⋅b​=1223π2​
Multiply the numbers: 23⋅2=46=1246π​
Cancel the common factor: 2=623π​
=4πn+623π​
θ=4πn+623π​
θ=4πn+623π​
θ=4πn+623π​
θ=4πn+617π​,θ=4πn+623π​
Combine all the solutionsθ=4πn+65π​,θ=4πn+611π​,θ=4πn+617π​,θ=4πn+623π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(36)-sin^2(36)=cos(x)23cos(x)=-17-cos(x)8cos^2(θ)+14cos(θ)-11=8cos(θ)-6sin^2(x)(tan^2(x))=1-sin^2(x)2sin^2(x)=3-5cos(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024