Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(3x)-1=sin(3x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(3x)−1=sin(3x)

Solution

x=2π​+32πn​,x=32π​+32πn​
+1
Degrees
x=90∘+120∘n,x=120∘+120∘n
Solution steps
cos(3x)−1=sin(3x)
Subtract sin(3x) from both sidescos(3x)−1−sin(3x)=0
Rewrite using trig identities
−1+cos(3x)−sin(3x)
Use the following identity: sin(x)=cos(2π​−x)=−1+cos(3x)−cos(2π​−3x)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−1−2sin(23x+2π​−3x​)sin(23x−(2π​−3x)​)
2sin(23x+2π​−3x​)sin(23x−(2π​−3x)​)=2​sin(412x−π​)
2sin(23x+2π​−3x​)sin(23x−(2π​−3x)​)
23x+2π​−3x​=4π​
23x+2π​−3x​
3x+2π​−3x=2π​
3x+2π​−3x
Group like terms=3x−3x+2π​
Add similar elements: 3x−3x=0=2π​
=22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
=2sin(4π​)sin(23x−(−3x+2π​)​)
23x−(2π​−3x)​=412x−π​
23x−(2π​−3x)​
Expand 3x−(2π​−3x):6x−2π​
3x−(2π​−3x)
−(2π​−3x):−2π​+3x
−(2π​−3x)
Distribute parentheses=−(2π​)−(−3x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+3x
=3x−2π​+3x
Simplify 3x−2π​+3x:6x−2π​
3x−2π​+3x
Group like terms=3x+3x−2π​
Add similar elements: 3x+3x=6x=6x−2π​
=6x−2π​
=26x−2π​​
Join 6x−2π​:212x−π​
6x−2π​
Convert element to fraction: 6x=26x2​=26x⋅2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=26x⋅2−π​
Multiply the numbers: 6⋅2=12=212x−π​
=2212x−π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅212x−π​
Multiply the numbers: 2⋅2=4=412x−π​
=2sin(4π​)sin(412x−π​)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=2⋅22​​sin(412x−π​)
Multiply fractions: a⋅cb​=ca⋅b​=22​⋅2sin(412x−π​)​
Cancel the common factor: 2=2​sin(412x−π​)
=−1−2​sin(412x−π​)
−1−2​sin(412x−π​)=0
Move 1to the right side
−1−2​sin(412x−π​)=0
Add 1 to both sides−1−2​sin(412x−π​)+1=0+1
Simplify−2​sin(412x−π​)=1
−2​sin(412x−π​)=1
Divide both sides by −2​
−2​sin(412x−π​)=1
Divide both sides by −2​−2​−2​sin(412x−π​)​=−2​1​
Simplify
−2​−2​sin(412x−π​)​=−2​1​
Simplify −2​−2​sin(412x−π​)​:sin(412x−π​)
−2​−2​sin(412x−π​)​
Apply the fraction rule: −b−a​=ba​=2​2​sin(412x−π​)​
Cancel the common factor: 2​=sin(412x−π​)
Simplify −2​1​:−22​​
−2​1​
Apply the fraction rule: −ba​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(412x−π​)=−22​​
sin(412x−π​)=−22​​
sin(412x−π​)=−22​​
General solutions for sin(412x−π​)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
412x−π​=45π​+2πn,412x−π​=47π​+2πn
412x−π​=45π​+2πn,412x−π​=47π​+2πn
Solve 412x−π​=45π​+2πn:x=2π​+32πn​
412x−π​=45π​+2πn
Multiply both sides by 4
412x−π​=45π​+2πn
Multiply both sides by 444(12x−π)​=4⋅45π​+4⋅2πn
Simplify
44(12x−π)​=4⋅45π​+4⋅2πn
Simplify 44(12x−π)​:12x−π
44(12x−π)​
Divide the numbers: 44​=1=12x−π
Simplify 4⋅45π​+4⋅2πn:5π+8πn
4⋅45π​+4⋅2πn
4⋅45π​=5π
4⋅45π​
Multiply fractions: a⋅cb​=ca⋅b​=45π4​
Cancel the common factor: 4=5π
4⋅2πn=8πn
4⋅2πn
Multiply the numbers: 4⋅2=8=8πn
=5π+8πn
12x−π=5π+8πn
12x−π=5π+8πn
12x−π=5π+8πn
Move πto the right side
12x−π=5π+8πn
Add π to both sides12x−π+π=5π+8πn+π
Simplify12x=6π+8πn
12x=6π+8πn
Divide both sides by 12
12x=6π+8πn
Divide both sides by 121212x​=126π​+128πn​
Simplify
1212x​=126π​+128πn​
Simplify 1212x​:x
1212x​
Divide the numbers: 1212​=1=x
Simplify 126π​+128πn​:2π​+32πn​
126π​+128πn​
Cancel 126π​:2π​
126π​
Cancel the common factor: 6=2π​
=2π​+128πn​
Cancel 128πn​:32πn​
128πn​
Cancel the common factor: 4=32πn​
=2π​+32πn​
x=2π​+32πn​
x=2π​+32πn​
x=2π​+32πn​
Solve 412x−π​=47π​+2πn:x=32π​+32πn​
412x−π​=47π​+2πn
Multiply both sides by 4
412x−π​=47π​+2πn
Multiply both sides by 444(12x−π)​=4⋅47π​+4⋅2πn
Simplify
44(12x−π)​=4⋅47π​+4⋅2πn
Simplify 44(12x−π)​:12x−π
44(12x−π)​
Divide the numbers: 44​=1=12x−π
Simplify 4⋅47π​+4⋅2πn:7π+8πn
4⋅47π​+4⋅2πn
4⋅47π​=7π
4⋅47π​
Multiply fractions: a⋅cb​=ca⋅b​=47π4​
Cancel the common factor: 4=7π
4⋅2πn=8πn
4⋅2πn
Multiply the numbers: 4⋅2=8=8πn
=7π+8πn
12x−π=7π+8πn
12x−π=7π+8πn
12x−π=7π+8πn
Move πto the right side
12x−π=7π+8πn
Add π to both sides12x−π+π=7π+8πn+π
Simplify12x=8π+8πn
12x=8π+8πn
Divide both sides by 12
12x=8π+8πn
Divide both sides by 121212x​=128π​+128πn​
Simplify
1212x​=128π​+128πn​
Simplify 1212x​:x
1212x​
Divide the numbers: 1212​=1=x
Simplify 128π​+128πn​:32π​+32πn​
128π​+128πn​
Cancel 128π​:32π​
128π​
Cancel the common factor: 4=32π​
=32π​+128πn​
Cancel 128πn​:32πn​
128πn​
Cancel the common factor: 4=32πn​
=32π​+32πn​
x=32π​+32πn​
x=32π​+32πn​
x=32π​+32πn​
x=2π​+32πn​,x=32π​+32πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x/3)=(sqrt(2))/22cos(3x)=-sqrt(3)cos(x)=cos^2(x)-tan(x)=14sin(3x)=7cos(3x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(3x)-1=sin(3x) ?

    The general solution for cos(3x)-1=sin(3x) is x= pi/2+(2pin)/3 ,x=(2pi)/3+(2pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024