Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(5x-10)=(sqrt(2))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(5x−10∘)=22​​

Solution

x=5360∘n​+11∘,x=5360∘n​+29∘
+1
Radians
x=18011π​+52π​n,x=18029π​+52π​n
Solution steps
sin(5x−10∘)=22​​
General solutions for sin(5x−10∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
5x−10∘=45∘+360∘n,5x−10∘=135∘+360∘n
5x−10∘=45∘+360∘n,5x−10∘=135∘+360∘n
Solve 5x−10∘=45∘+360∘n:x=5360∘n​+11∘
5x−10∘=45∘+360∘n
Move 10∘to the right side
5x−10∘=45∘+360∘n
Add 10∘ to both sides5x−10∘+10∘=45∘+360∘n+10∘
Simplify
5x−10∘+10∘=45∘+360∘n+10∘
Simplify 5x−10∘+10∘:5x
5x−10∘+10∘
Add similar elements: −10∘+10∘=0
=5x
Simplify 45∘+360∘n+10∘:360∘n+55∘
45∘+360∘n+10∘
Group like terms=360∘n+45∘+10∘
Least Common Multiplier of 4,18:36
4,18
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 18=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 45∘:multiply the denominator and numerator by 945∘=4⋅9180∘9​=45∘
For 10∘:multiply the denominator and numerator by 210∘=18⋅2180∘2​=10∘
=45∘+10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36180∘9+180∘2​
Add similar elements: 1620∘+360∘=1980∘=360∘n+55∘
5x=360∘n+55∘
5x=360∘n+55∘
5x=360∘n+55∘
Divide both sides by 5
5x=360∘n+55∘
Divide both sides by 555x​=5360∘n​+555∘​
Simplify
55x​=5360∘n​+555∘​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 5360∘n​+555∘​:5360∘n​+11∘
5360∘n​+555∘​
555∘​=11∘
555∘​
Apply the fraction rule: acb​​=c⋅ab​=36⋅51980∘​
Multiply the numbers: 36⋅5=180=11∘
=5360∘n​+11∘
x=5360∘n​+11∘
x=5360∘n​+11∘
x=5360∘n​+11∘
Solve 5x−10∘=135∘+360∘n:x=5360∘n​+29∘
5x−10∘=135∘+360∘n
Move 10∘to the right side
5x−10∘=135∘+360∘n
Add 10∘ to both sides5x−10∘+10∘=135∘+360∘n+10∘
Simplify
5x−10∘+10∘=135∘+360∘n+10∘
Simplify 5x−10∘+10∘:5x
5x−10∘+10∘
Add similar elements: −10∘+10∘=0
=5x
Simplify 135∘+360∘n+10∘:360∘n+145∘
135∘+360∘n+10∘
Group like terms=360∘n+135∘+10∘
Least Common Multiplier of 4,18:36
4,18
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 18=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 135∘:multiply the denominator and numerator by 9135∘=4⋅9540∘9​=135∘
For 10∘:multiply the denominator and numerator by 210∘=18⋅2180∘2​=10∘
=135∘+10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=364860∘+180∘2​
Add similar elements: 4860∘+360∘=5220∘=360∘n+145∘
5x=360∘n+145∘
5x=360∘n+145∘
5x=360∘n+145∘
Divide both sides by 5
5x=360∘n+145∘
Divide both sides by 555x​=5360∘n​+5145∘​
Simplify
55x​=5360∘n​+5145∘​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 5360∘n​+5145∘​:5360∘n​+29∘
5360∘n​+5145∘​
5145∘​=29∘
5145∘​
Apply the fraction rule: acb​​=c⋅ab​=36⋅55220∘​
Multiply the numbers: 36⋅5=180=29∘
=5360∘n​+29∘
x=5360∘n​+29∘
x=5360∘n​+29∘
x=5360∘n​+29∘
x=5360∘n​+11∘,x=5360∘n​+29∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)= 3/6sinh(x)= 9/4012sin(x)=62tan^2(x)-5tan(x)+2=09sec^2(x)-9sec(x)=18

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(5x-10)=(sqrt(2))/2 ?

    The general solution for sin(5x-10)=(sqrt(2))/2 is x=(360n)/5+11,x=(360n)/5+29
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024