Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3+sin(θ)=2csc(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3+sin(θ)=2csc(θ)

Solution

θ=0.59626…+2πn,θ=π−0.59626…+2πn
+1
Degrees
θ=34.16325…∘+360∘n,θ=145.83674…∘+360∘n
Solution steps
3+sin(θ)=2csc(θ)
Subtract 2csc(θ) from both sides3+sin(θ)−2csc(θ)=0
Rewrite using trig identities
3+sin(θ)−2csc(θ)
Use the basic trigonometric identity: sin(x)=csc(x)1​=3+csc(θ)1​−2csc(θ)
3+csc(θ)1​−2csc(θ)=0
Solve by substitution
3+csc(θ)1​−2csc(θ)=0
Let: csc(θ)=u3+u1​−2u=0
3+u1​−2u=0:u=−4−3+17​​,u=43+17​​
3+u1​−2u=0
Multiply both sides by u
3+u1​−2u=0
Multiply both sides by u3u+u1​u−2uu=0⋅u
Simplify
3u+u1​u−2uu=0⋅u
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
Simplify −2uu:−2u2
−2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=−2u1+1
Add the numbers: 1+1=2=−2u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
3u+1−2u2=0
3u+1−2u2=0
3u+1−2u2=0
Solve 3u+1−2u2=0:u=−4−3+17​​,u=43+17​​
3u+1−2u2=0
Write in the standard form ax2+bx+c=0−2u2+3u+1=0
Solve with the quadratic formula
−2u2+3u+1=0
Quadratic Equation Formula:
For a=−2,b=3,c=1u1,2​=2(−2)−3±32−4(−2)⋅1​​
u1,2​=2(−2)−3±32−4(−2)⋅1​​
32−4(−2)⋅1​=17​
32−4(−2)⋅1​
Apply rule −(−a)=a=32+4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=32+8​
32=9=9+8​
Add the numbers: 9+8=17=17​
u1,2​=2(−2)−3±17​​
Separate the solutionsu1​=2(−2)−3+17​​,u2​=2(−2)−3−17​​
u=2(−2)−3+17​​:−4−3+17​​
2(−2)−3+17​​
Remove parentheses: (−a)=−a=−2⋅2−3+17​​
Multiply the numbers: 2⋅2=4=−4−3+17​​
Apply the fraction rule: −ba​=−ba​=−4−3+17​​
u=2(−2)−3−17​​:43+17​​
2(−2)−3−17​​
Remove parentheses: (−a)=−a=−2⋅2−3−17​​
Multiply the numbers: 2⋅2=4=−4−3−17​​
Apply the fraction rule: −b−a​=ba​−3−17​=−(3+17​)=43+17​​
The solutions to the quadratic equation are:u=−4−3+17​​,u=43+17​​
u=−4−3+17​​,u=43+17​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 3+u1​−2u and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−4−3+17​​,u=43+17​​
Substitute back u=csc(θ)csc(θ)=−4−3+17​​,csc(θ)=43+17​​
csc(θ)=−4−3+17​​,csc(θ)=43+17​​
csc(θ)=−4−3+17​​:No Solution
csc(θ)=−4−3+17​​
csc(x)≤−1orcsc(x)≥1NoSolution
csc(θ)=43+17​​:θ=arccsc(43+17​​)+2πn,θ=π−arccsc(43+17​​)+2πn
csc(θ)=43+17​​
Apply trig inverse properties
csc(θ)=43+17​​
General solutions for csc(θ)=43+17​​csc(x)=a⇒x=arccsc(a)+2πn,x=π−arccsc(a)+2πnθ=arccsc(43+17​​)+2πn,θ=π−arccsc(43+17​​)+2πn
θ=arccsc(43+17​​)+2πn,θ=π−arccsc(43+17​​)+2πn
Combine all the solutionsθ=arccsc(43+17​​)+2πn,θ=π−arccsc(43+17​​)+2πn
Show solutions in decimal formθ=0.59626…+2πn,θ=π−0.59626…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

10sin^2(x)-3sin(x)-1=0cos(2x)-cos(pi/2+x)=1cos(3x)-cos(7x)=02sin(x-1)=0tan(x)=0.42

Frequently Asked Questions (FAQ)

  • What is the general solution for 3+sin(θ)=2csc(θ) ?

    The general solution for 3+sin(θ)=2csc(θ) is θ=0.59626…+2pin,θ=pi-0.59626…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024