Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc^4(2x)-4=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc4(2x)−4=0

Solution

x=8π​+πn,x=83π​+πn,x=85π​+πn,x=87π​+πn
+1
Degrees
x=22.5∘+180∘n,x=67.5∘+180∘n,x=112.5∘+180∘n,x=157.5∘+180∘n
Solution steps
csc4(2x)−4=0
Solve by substitution
csc4(2x)−4=0
Let: csc(2x)=uu4−4=0
u4−4=0:u=2​,u=−2​,u=2​i,u=−2​i
u4−4=0
Move 4to the right side
u4−4=0
Add 4 to both sidesu4−4+4=0+4
Simplifyu4=4
u4=4
Rewrite the equation with v=u2 and v2=u4v2=4
Solve v2=4:v=4​,v=−4​
v2=4
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
v=4​,v=−4​
v=4​,v=−4​
Substitute back v=u2,solve for u
Solve u2=4​:u=2​,u=−2​
u2=4​
Simplify 4​:2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2​,u=−2​
Solve u2=−4​:u=2​i,u=−2​i
u2=−4​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u2=−2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−2​,u=−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
Simplify −−2​:−2​i
−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
=−2​i
u=2​i,u=−2​i
The solutions are
u=2​,u=−2​,u=2​i,u=−2​i
Substitute back u=csc(2x)csc(2x)=2​,csc(2x)=−2​,csc(2x)=2​i,csc(2x)=−2​i
csc(2x)=2​,csc(2x)=−2​,csc(2x)=2​i,csc(2x)=−2​i
csc(2x)=2​:x=8π​+πn,x=83π​+πn
csc(2x)=2​
General solutions for csc(2x)=2​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
2x=4π​+2πn,2x=43π​+2πn
2x=4π​+2πn,2x=43π​+2πn
Solve 2x=4π​+2πn:x=8π​+πn
2x=4π​+2πn
Divide both sides by 2
2x=4π​+2πn
Divide both sides by 222x​=24π​​+22πn​
Simplify
22x​=24π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 24π​​+22πn​:8π​+πn
24π​​+22πn​
24π​​=8π​
24π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2π​
Multiply the numbers: 4⋅2=8=8π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=8π​+πn
x=8π​+πn
x=8π​+πn
x=8π​+πn
Solve 2x=43π​+2πn:x=83π​+πn
2x=43π​+2πn
Divide both sides by 2
2x=43π​+2πn
Divide both sides by 222x​=243π​​+22πn​
Simplify
22x​=243π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 243π​​+22πn​:83π​+πn
243π​​+22πn​
243π​​=83π​
243π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅23π​
Multiply the numbers: 4⋅2=8=83π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=83π​+πn
x=83π​+πn
x=83π​+πn
x=83π​+πn
x=8π​+πn,x=83π​+πn
csc(2x)=−2​:x=85π​+πn,x=87π​+πn
csc(2x)=−2​
General solutions for csc(2x)=−2​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
2x=45π​+2πn,2x=47π​+2πn
2x=45π​+2πn,2x=47π​+2πn
Solve 2x=45π​+2πn:x=85π​+πn
2x=45π​+2πn
Divide both sides by 2
2x=45π​+2πn
Divide both sides by 222x​=245π​​+22πn​
Simplify
22x​=245π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 245π​​+22πn​:85π​+πn
245π​​+22πn​
245π​​=85π​
245π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅25π​
Multiply the numbers: 4⋅2=8=85π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=85π​+πn
x=85π​+πn
x=85π​+πn
x=85π​+πn
Solve 2x=47π​+2πn:x=87π​+πn
2x=47π​+2πn
Divide both sides by 2
2x=47π​+2πn
Divide both sides by 222x​=247π​​+22πn​
Simplify
22x​=247π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 247π​​+22πn​:87π​+πn
247π​​+22πn​
247π​​=87π​
247π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅27π​
Multiply the numbers: 4⋅2=8=87π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=87π​+πn
x=87π​+πn
x=87π​+πn
x=87π​+πn
x=85π​+πn,x=87π​+πn
csc(2x)=2​i:No Solution
csc(2x)=2​i
NoSolution
csc(2x)=−2​i:No Solution
csc(2x)=−2​i
NoSolution
Combine all the solutionsx=8π​+πn,x=83π​+πn,x=85π​+πn,x=87π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 4/13sin(3x)=-1/2 ,0<= x<= 2pi4cos(x)-3sec(x)=0sin(θ)= 11/61sin(4x)=-(sqrt(3))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for csc^4(2x)-4=0 ?

    The general solution for csc^4(2x)-4=0 is x= pi/8+pin,x=(3pi)/8+pin,x=(5pi)/8+pin,x=(7pi)/8+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024