Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sinh(2x)-10sinh(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sinh(2x)−10sinh(x)=0

Solution

x=0,x=ln(25+21​​),x=ln(25−21​​)
+1
Degrees
x=0∘,x=89.77098…∘,x=−89.77098…∘
Solution steps
2sinh(2x)−10sinh(x)=0
Rewrite using trig identities
2sinh(2x)−10sinh(x)=0
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2⋅2e2x−e−2x​−10⋅2ex−e−x​=0
2⋅2e2x−e−2x​−10⋅2ex−e−x​=0
2⋅2e2x−e−2x​−10⋅2ex−e−x​=0:x=0,x=ln(25+21​​),x=ln(25−21​​)
2⋅2e2x−e−2x​−10⋅2ex−e−x​=0
Add 102ex−e−x​ to both sides2⋅2e2x−e−2x​−10⋅2ex−e−x​+10⋅2ex−e−x​=0+10⋅2ex−e−x​
Simplifye2x−e−2x=5(ex−e−x)
Apply exponent rules
e2x−e−2x=5(ex−e−x)
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−2,e−x=(ex)−1(ex)2−(ex)−2=5(ex−(ex)−1)
(ex)2−(ex)−2=5(ex−(ex)−1)
Rewrite the equation with ex=u(u)2−(u)−2=5(u−(u)−1)
Solve u2−u−2=5(u−u−1):u=−1,u=1,u=25+21​​,u=25−21​​
u2−u−2=5(u−u−1)
Refineu2−u21​=5(u−u1​)
Multiply both sides by u2
u2−u21​=5(u−u1​)
Multiply both sides by u2u2u2−u21​u2=5(u−u1​)u2
Simplify
u2u2−u21​u2=5(u−u1​)u2
Simplify u2u2:u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
Simplify −u21​u2:−1
−u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u21⋅u2​
Cancel the common factor: u2=−1
u4−1=5(u−u1​)u2
u4−1=5(u−u1​)u2
u4−1=5(u−u1​)u2
Expand 5(u−u1​)u2:5u3−5u
5(u−u1​)u2
=5u2(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=5u2,b=u,c=u1​=5u2u−5u2u1​
=5u2u−5⋅u1​u2
Simplify 5u2u−5⋅u1​u2:5u3−5u
5u2u−5⋅u1​u2
5u2u=5u3
5u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=5u2+1
Add the numbers: 2+1=3=5u3
5⋅u1​u2=5u
5⋅u1​u2
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅5u2​
Multiply the numbers: 1⋅5=5=u5u2​
Cancel the common factor: u=5u
=5u3−5u
=5u3−5u
u4−1=5u3−5u
Solve u4−1=5u3−5u:u=−1,u=1,u=25+21​​,u=25−21​​
u4−1=5u3−5u
Move 5uto the left side
u4−1=5u3−5u
Add 5u to both sidesu4−1+5u=5u3−5u+5u
Simplifyu4−1+5u=5u3
u4−1+5u=5u3
Move 5u3to the left side
u4−1+5u=5u3
Subtract 5u3 from both sidesu4−1+5u−5u3=5u3−5u3
Simplifyu4−1+5u−5u3=0
u4−1+5u−5u3=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−5u3+5u−1=0
Factor u4−5u3+5u−1:(u+1)(u−1)(u2−5u+1)
u4−5u3+5u−1
Use the rational root theorem
a0​=1,an​=1
The dividers of a0​:1,The dividers of an​:1
Therefore, check the following rational numbers:±11​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+1u4−5u3+5u−1​
u+1u4−5u3+5u−1​=u3−6u2+6u−1
u+1u4−5u3+5u−1​
Divide u+1u4−5u3+5u−1​:u+1u4−5u3+5u−1​=u3+u+1−6u3+5u−1​
Divide the leading coefficients of the numerator u4−5u3+5u−1
and the divisor u+1:uu4​=u3
Quotient=u3
Multiply u+1 by u3:u4+u3Subtract u4+u3 from u4−5u3+5u−1 to get new remainderRemainder=−6u3+5u−1
Thereforeu+1u4−5u3+5u−1​=u3+u+1−6u3+5u−1​
=u3+u+1−6u3+5u−1​
Divide u+1−6u3+5u−1​:u+1−6u3+5u−1​=−6u2+u+16u2+5u−1​
Divide the leading coefficients of the numerator −6u3+5u−1
and the divisor u+1:u−6u3​=−6u2
Quotient=−6u2
Multiply u+1 by −6u2:−6u3−6u2Subtract −6u3−6u2 from −6u3+5u−1 to get new remainderRemainder=6u2+5u−1
Thereforeu+1−6u3+5u−1​=−6u2+u+16u2+5u−1​
=u3−6u2+u+16u2+5u−1​
Divide u+16u2+5u−1​:u+16u2+5u−1​=6u+u+1−u−1​
Divide the leading coefficients of the numerator 6u2+5u−1
and the divisor u+1:u6u2​=6u
Quotient=6u
Multiply u+1 by 6u:6u2+6uSubtract 6u2+6u from 6u2+5u−1 to get new remainderRemainder=−u−1
Thereforeu+16u2+5u−1​=6u+u+1−u−1​
=u3−6u2+6u+u+1−u−1​
Divide u+1−u−1​:u+1−u−1​=−1
Divide the leading coefficients of the numerator −u−1
and the divisor u+1:u−u​=−1
Quotient=−1
Multiply u+1 by −1:−u−1Subtract −u−1 from −u−1 to get new remainderRemainder=0
Thereforeu+1−u−1​=−1
=u3−6u2+6u−1
=u3−6u2+6u−1
Factor u3−6u2+6u−1:(u−1)(u2−5u+1)
u3−6u2+6u−1
Use the rational root theorem
a0​=1,an​=1
The dividers of a0​:1,The dividers of an​:1
Therefore, check the following rational numbers:±11​
11​ is a root of the expression, so factor out u−1
=(u−1)u−1u3−6u2+6u−1​
u−1u3−6u2+6u−1​=u2−5u+1
u−1u3−6u2+6u−1​
Divide u−1u3−6u2+6u−1​:u−1u3−6u2+6u−1​=u2+u−1−5u2+6u−1​
Divide the leading coefficients of the numerator u3−6u2+6u−1
and the divisor u−1:uu3​=u2
Quotient=u2
Multiply u−1 by u2:u3−u2Subtract u3−u2 from u3−6u2+6u−1 to get new remainderRemainder=−5u2+6u−1
Thereforeu−1u3−6u2+6u−1​=u2+u−1−5u2+6u−1​
=u2+u−1−5u2+6u−1​
Divide u−1−5u2+6u−1​:u−1−5u2+6u−1​=−5u+u−1u−1​
Divide the leading coefficients of the numerator −5u2+6u−1
and the divisor u−1:u−5u2​=−5u
Quotient=−5u
Multiply u−1 by −5u:−5u2+5uSubtract −5u2+5u from −5u2+6u−1 to get new remainderRemainder=u−1
Thereforeu−1−5u2+6u−1​=−5u+u−1u−1​
=u2−5u+u−1u−1​
Divide u−1u−1​:u−1u−1​=1
Divide the leading coefficients of the numerator u−1
and the divisor u−1:uu​=1
Quotient=1
Multiply u−1 by 1:u−1Subtract u−1 from u−1 to get new remainderRemainder=0
Thereforeu−1u−1​=1
=u2−5u+1
=u2−5u+1
=(u−1)(u2−5u+1)
=(u+1)(u−1)(u2−5u+1)
(u+1)(u−1)(u2−5u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0oru−1=0oru2−5u+1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u2−5u+1=0:u=25+21​​,u=25−21​​
u2−5u+1=0
Solve with the quadratic formula
u2−5u+1=0
Quadratic Equation Formula:
For a=1,b=−5,c=1u1,2​=2⋅1−(−5)±(−5)2−4⋅1⋅1​​
u1,2​=2⋅1−(−5)±(−5)2−4⋅1⋅1​​
(−5)2−4⋅1⋅1​=21​
(−5)2−4⋅1⋅1​
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52−4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=52−4​
52=25=25−4​
Subtract the numbers: 25−4=21=21​
u1,2​=2⋅1−(−5)±21​​
Separate the solutionsu1​=2⋅1−(−5)+21​​,u2​=2⋅1−(−5)−21​​
u=2⋅1−(−5)+21​​:25+21​​
2⋅1−(−5)+21​​
Apply rule −(−a)=a=2⋅15+21​​
Multiply the numbers: 2⋅1=2=25+21​​
u=2⋅1−(−5)−21​​:25−21​​
2⋅1−(−5)−21​​
Apply rule −(−a)=a=2⋅15−21​​
Multiply the numbers: 2⋅1=2=25−21​​
The solutions to the quadratic equation are:u=25+21​​,u=25−21​​
The solutions areu=−1,u=1,u=25+21​​,u=25−21​​
u=−1,u=1,u=25+21​​,u=25−21​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u2−u−2 and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Take the denominator(s) of 5(u−u−1) and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−1,u=1,u=25+21​​,u=25−21​​
u=−1,u=1,u=25+21​​,u=25−21​​
Substitute back u=ex,solve for x
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=25+21​​:x=ln(25+21​​)
ex=25+21​​
Apply exponent rules
ex=25+21​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(25+21​​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(25+21​​)
x=ln(25+21​​)
Solve ex=25−21​​:x=ln(25−21​​)
ex=25−21​​
Apply exponent rules
ex=25−21​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(25−21​​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(25−21​​)
x=ln(25−21​​)
x=0,x=ln(25+21​​),x=ln(25−21​​)
x=0,x=ln(25+21​​),x=ln(25−21​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(x-pi/2)+1=0-sin(t)+cos(t)=04cos(x)=3sec(x)2sin(x)cos(x)=2sin(x)csc(3x)=2

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sinh(2x)-10sinh(x)=0 ?

    The general solution for 2sinh(2x)-10sinh(x)=0 is x=0,x=ln((5+sqrt(21))/2),x=ln((5-sqrt(21))/2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024