Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

10=6.7+13.75tan(θ)-4.718(1+tan^2(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

10=6.7+13.75tan(θ)−4.718(1+tan2(θ))

Solution

θ=0.67843…+πn,θ=1.12790…+πn
+1
Degrees
θ=38.87154…∘+180∘n,θ=64.62419…∘+180∘n
Solution steps
10=6.7+13.75tan(θ)−4.718(1+tan2(θ))
Switch sides6.7+13.75tan(θ)−4.718(1+tan2(θ))=10
Solve by substitution
6.7+13.75tan(θ)−4.718(1+tan2(θ))=10
Let: tan(θ)=u6.7+13.75u−4.718(1+u2)=10
6.7+13.75u−4.718(1+u2)=10:u=47186875−9436701​​,u=47186875+9436701​​
6.7+13.75u−4.718(1+u2)=10
Multiply both sides by 1000
6.7+13.75u−4.718(1+u2)=10
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 3digits to the right of the decimal point, therefore multiply by 10006.7⋅1000+13.75u⋅1000−4.718(1+u2)⋅1000=10⋅1000
Refine6700+13750u−4718(1+u2)=10000
6700+13750u−4718(1+u2)=10000
Expand 6700+13750u−4718(1+u2):−4718u2+13750u+1982
6700+13750u−4718(1+u2)
Expand −4718(1+u2):−4718−4718u2
−4718(1+u2)
Apply the distributive law: a(b+c)=ab+aca=−4718,b=1,c=u2=−4718⋅1+(−4718)u2
Apply minus-plus rules+(−a)=−a=−4718⋅1−4718u2
Multiply the numbers: 4718⋅1=4718=−4718−4718u2
=6700+13750u−4718−4718u2
Simplify 6700+13750u−4718−4718u2:−4718u2+13750u+1982
6700+13750u−4718−4718u2
Group like terms=−4718u2+13750u+6700−4718
Add/Subtract the numbers: 6700−4718=1982=−4718u2+13750u+1982
=−4718u2+13750u+1982
−4718u2+13750u+1982=10000
Move 10000to the left side
−4718u2+13750u+1982=10000
Subtract 10000 from both sides−4718u2+13750u+1982−10000=10000−10000
Simplify−4718u2+13750u−8018=0
−4718u2+13750u−8018=0
Solve with the quadratic formula
−4718u2+13750u−8018=0
Quadratic Equation Formula:
For a=−4718,b=13750,c=−8018u1,2​=2(−4718)−13750±137502−4(−4718)(−8018)​​
u1,2​=2(−4718)−13750±137502−4(−4718)(−8018)​​
137502−4(−4718)(−8018)​=29436701​
137502−4(−4718)(−8018)​
Apply rule −(−a)=a=137502−4⋅4718⋅8018​
Multiply the numbers: 4⋅4718⋅8018=151315696=137502−151315696​
137502=189062500=189062500−151315696​
Subtract the numbers: 189062500−151315696=37746804=37746804​
Prime factorization of 37746804:22⋅3⋅179⋅17573
37746804
=22⋅3⋅179⋅17573​
Apply radical rule: =22​3⋅179⋅17573​
Apply radical rule: 22​=2=23⋅179⋅17573​
Refine=29436701​
u1,2​=2(−4718)−13750±29436701​​
Separate the solutionsu1​=2(−4718)−13750+29436701​​,u2​=2(−4718)−13750−29436701​​
u=2(−4718)−13750+29436701​​:47186875−9436701​​
2(−4718)−13750+29436701​​
Remove parentheses: (−a)=−a=−2⋅4718−13750+29436701​​
Multiply the numbers: 2⋅4718=9436=−9436−13750+29436701​​
Apply the fraction rule: −b−a​=ba​−13750+29436701​=−(13750−29436701​)=943613750−29436701​​
Factor 13750−29436701​:2(6875−9436701​)
13750−29436701​
Rewrite as=2⋅6875−29436701​
Factor out common term 2=2(6875−9436701​)
=94362(6875−9436701​)​
Cancel the common factor: 2=47186875−9436701​​
u=2(−4718)−13750−29436701​​:47186875+9436701​​
2(−4718)−13750−29436701​​
Remove parentheses: (−a)=−a=−2⋅4718−13750−29436701​​
Multiply the numbers: 2⋅4718=9436=−9436−13750−29436701​​
Apply the fraction rule: −b−a​=ba​−13750−29436701​=−(13750+29436701​)=943613750+29436701​​
Factor 13750+29436701​:2(6875+9436701​)
13750+29436701​
Rewrite as=2⋅6875+29436701​
Factor out common term 2=2(6875+9436701​)
=94362(6875+9436701​)​
Cancel the common factor: 2=47186875+9436701​​
The solutions to the quadratic equation are:u=47186875−9436701​​,u=47186875+9436701​​
Substitute back u=tan(θ)tan(θ)=47186875−9436701​​,tan(θ)=47186875+9436701​​
tan(θ)=47186875−9436701​​,tan(θ)=47186875+9436701​​
tan(θ)=47186875−9436701​​:θ=arctan(47186875−9436701​​)+πn
tan(θ)=47186875−9436701​​
Apply trig inverse properties
tan(θ)=47186875−9436701​​
General solutions for tan(θ)=47186875−9436701​​tan(x)=a⇒x=arctan(a)+πnθ=arctan(47186875−9436701​​)+πn
θ=arctan(47186875−9436701​​)+πn
tan(θ)=47186875+9436701​​:θ=arctan(47186875+9436701​​)+πn
tan(θ)=47186875+9436701​​
Apply trig inverse properties
tan(θ)=47186875+9436701​​
General solutions for tan(θ)=47186875+9436701​​tan(x)=a⇒x=arctan(a)+πnθ=arctan(47186875+9436701​​)+πn
θ=arctan(47186875+9436701​​)+πn
Combine all the solutionsθ=arctan(47186875−9436701​​)+πn,θ=arctan(47186875+9436701​​)+πn
Show solutions in decimal formθ=0.67843…+πn,θ=1.12790…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos(3θ)=-sqrt(3)cos(θ)=-cos(θ)tan^4(θ)-20tan^2(θ)+64=0sin(2t)=-cos(2t)cos(3θ)=sin(3θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 10=6.7+13.75tan(θ)-4.718(1+tan^2(θ)) ?

    The general solution for 10=6.7+13.75tan(θ)-4.718(1+tan^2(θ)) is θ=0.67843…+pin,θ=1.12790…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024