Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(x)=-sqrt(1+tan(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(x)=−1+tan(x)​

Solution

x=4π​+πn,x=πn
+1
Degrees
x=45∘+180∘n,x=0∘+180∘n
Solution steps
sec(x)=−1+tan(x)​
Square both sidessec2(x)=(−1+tan(x)​)2
Subtract (−1+tan(x)​)2 from both sidessec2(x)−1−tan(x)=0
Rewrite using trig identities
−1+sec2(x)−tan(x)
Use the Pythagorean identity: sec2(x)=tan2(x)+1sec2(x)−1=tan2(x)=−tan(x)+tan2(x)
−tan(x)+tan2(x)=0
Solve by substitution
−tan(x)+tan2(x)=0
Let: tan(x)=u−u+u2=0
−u+u2=0:u=1,u=0
−u+u2=0
Write in the standard form ax2+bx+c=0u2−u=0
Solve with the quadratic formula
u2−u=0
Quadratic Equation Formula:
For a=1,b=−1,c=0u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
(−1)2−4⋅1⋅0​=1
(−1)2−4⋅1⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
u1,2​=2⋅1−(−1)±1​
Separate the solutionsu1​=2⋅1−(−1)+1​,u2​=2⋅1−(−1)−1​
u=2⋅1−(−1)+1​:1
2⋅1−(−1)+1​
Apply rule −(−a)=a=2⋅11+1​
Add the numbers: 1+1=2=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
u=2⋅1−(−1)−1​:0
2⋅1−(−1)−1​
Apply rule −(−a)=a=2⋅11−1​
Subtract the numbers: 1−1=0=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=1,u=0
Substitute back u=tan(x)tan(x)=1,tan(x)=0
tan(x)=1,tan(x)=0
tan(x)=1:x=4π​+πn
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
tan(x)=0:x=πn
tan(x)=0
General solutions for tan(x)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Solve x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
Combine all the solutionsx=4π​+πn,x=πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec(x)=−1+tan(x)​
Remove the ones that don't agree with the equation.
Check the solution 4π​+πn:True
4π​+πn
Plug in n=14π​+π1
For sec(x)=−1+tan(x)​plug inx=4π​+π1sec(4π​+π1)=−1+tan(4π​+π1)​
Refine−1.41421…=−1.41421…
⇒True
Check the solution πn:True
πn
Plug in n=1π1
For sec(x)=−1+tan(x)​plug inx=π1sec(π1)=−1+tan(π1)​
Refine−1=−1
⇒True
x=4π​+πn,x=πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)+2cos^2(x)=0solvefor x,csc(x)+cot(x)=1sin(θ)=-5sin(x)-1=cos(x)-13cot(x)=tan(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(x)=-sqrt(1+tan(x)) ?

    The general solution for sec(x)=-sqrt(1+tan(x)) is x= pi/4+pin,x=pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024