Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+20)=cos(2x+25)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+20∘)=cos(2x+25∘)

Solution

x=121440∘n+180∘​,x=−363420∘+12960∘n​
+1
Radians
x=12π​+128π​n,x=−3619π​−3672π​n
Solution steps
sin(x+20∘)=cos(2x+25∘)
Rewrite using trig identities
sin(x+20∘)=cos(2x+25∘)
Use the following identity: cos(x)=sin(90∘−x)sin(x+20∘)=sin(90∘−(2x+25∘))
sin(x+20∘)=sin(90∘−(2x+25∘))
Apply trig inverse properties
sin(x+20∘)=sin(90∘−(2x+25∘))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnx+20∘=90∘−(2x+25∘)+360∘n,x+20∘=180∘−(90∘−(2x+25∘))+360∘n
x+20∘=90∘−(2x+25∘)+360∘n,x+20∘=180∘−(90∘−(2x+25∘))+360∘n
x+20∘=90∘−(2x+25∘)+360∘n:x=121440∘n+180∘​
x+20∘=90∘−(2x+25∘)+360∘n
Expand 90∘−(2x+25∘)+360∘n:−2x+360∘n+65∘
90∘−(2x+25∘)+360∘n
−(2x+25∘):−2x−25∘
−(2x+25∘)
Distribute parentheses=−(2x)−(25∘)
Apply minus-plus rules+(−a)=−a=−2x−25∘
=90∘−2x−25∘+360∘n
Simplify 90∘−2x−25∘+360∘n:−2x+360∘n+65∘
90∘−2x−25∘+360∘n
Group like terms=−2x+360∘n+90∘−25∘
Least Common Multiplier of 2,36:36
2,36
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 36=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 90∘:multiply the denominator and numerator by 1890∘=2⋅18180∘18​=90∘
=90∘−25∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36180∘18−900∘​
Add similar elements: 3240∘−900∘=2340∘=−2x+360∘n+65∘
=−2x+360∘n+65∘
x+20∘=−2x+360∘n+65∘
Move 20∘to the right side
x+20∘=−2x+360∘n+65∘
Subtract 20∘ from both sidesx+20∘−20∘=−2x+360∘n+65∘−20∘
Simplify
x+20∘−20∘=−2x+360∘n+65∘−20∘
Simplify x+20∘−20∘:x
x+20∘−20∘
Add similar elements: 20∘−20∘=0
=x
Simplify −2x+360∘n+65∘−20∘:−2x+360∘n+45∘
−2x+360∘n+65∘−20∘
Least Common Multiplier of 36,9:36
36,9
Least Common Multiplier (LCM)
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 36 or 9=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 20∘:multiply the denominator and numerator by 420∘=9⋅4180∘4​=20∘
=65∘−20∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=362340∘−180∘4​
Add similar elements: 2340∘−720∘=1620∘=45∘
Cancel the common factor: 9=−2x+360∘n+45∘
x=−2x+360∘n+45∘
x=−2x+360∘n+45∘
x=−2x+360∘n+45∘
Move 2xto the left side
x=−2x+360∘n+45∘
Add 2x to both sidesx+2x=−2x+360∘n+45∘+2x
Simplify3x=360∘n+45∘
3x=360∘n+45∘
Divide both sides by 3
3x=360∘n+45∘
Divide both sides by 333x​=3360∘n​+345∘​
Simplify
33x​=3360∘n​+345∘​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3360∘n​+345∘​:121440∘n+180∘​
3360∘n​+345∘​
Apply rule ca​±cb​=ca±b​=3360∘n+45∘​
Join 360∘n+45∘:41440∘n+180∘​
360∘n+45∘
Convert element to fraction: 360∘n=4360∘n4​=4360∘n⋅4​+45∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4360∘n⋅4+180∘​
Multiply the numbers: 2⋅4=8=41440∘n+180∘​
=341440∘n+180∘​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅31440∘n+180∘​
Multiply the numbers: 4⋅3=12=121440∘n+180∘​
x=121440∘n+180∘​
x=121440∘n+180∘​
x=121440∘n+180∘​
x+20∘=180∘−(90∘−(2x+25∘))+360∘n:x=−363420∘+12960∘n​
x+20∘=180∘−(90∘−(2x+25∘))+360∘n
Expand 180∘−(90∘−(2x+25∘))+360∘n:180∘+2x−65∘+360∘n
180∘−(90∘−(2x+25∘))+360∘n
Expand 90∘−(2x+25∘):−2x+65∘
90∘−(2x+25∘)
−(2x+25∘):−2x−25∘
−(2x+25∘)
Distribute parentheses=−(2x)−(25∘)
Apply minus-plus rules+(−a)=−a=−2x−25∘
=90∘−2x−25∘
Simplify 90∘−2x−25∘:−2x+65∘
90∘−2x−25∘
Group like terms=−2x+90∘−25∘
Least Common Multiplier of 2,36:36
2,36
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 36=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 90∘:multiply the denominator and numerator by 1890∘=2⋅18180∘18​=90∘
=90∘−25∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36180∘18−900∘​
Add similar elements: 3240∘−900∘=2340∘=−2x+65∘
=−2x+65∘
=180∘−(−2x+65∘)+360∘n
−(−2x+65∘):2x−65∘
−(−2x+65∘)
Distribute parentheses=−(−2x)−(65∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=2x−65∘
=180∘+2x−65∘+360∘n
x+20∘=180∘+2x−65∘+360∘n
Move 20∘to the right side
x+20∘=180∘+2x−65∘+360∘n
Subtract 20∘ from both sidesx+20∘−20∘=180∘+2x−65∘+360∘n−20∘
Simplify
x+20∘−20∘=180∘+2x−65∘+360∘n−20∘
Simplify x+20∘−20∘:x
x+20∘−20∘
Add similar elements: 20∘−20∘=0
=x
Simplify 180∘+2x−65∘+360∘n−20∘:2x+180∘+360∘n−85∘
180∘+2x−65∘+360∘n−20∘
Group like terms=2x+180∘+360∘n−20∘−65∘
Least Common Multiplier of 9,36:36
9,36
Least Common Multiplier (LCM)
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 9 or 36=3⋅3⋅2⋅2
Multiply the numbers: 3⋅3⋅2⋅2=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 20∘:multiply the denominator and numerator by 420∘=9⋅4180∘4​=20∘
=−20∘−65∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36−180∘4−2340∘​
Add similar elements: −720∘−2340∘=−3060∘=36−3060∘​
Apply the fraction rule: b−a​=−ba​=2x+180∘+360∘n−85∘
x=2x+180∘+360∘n−85∘
x=2x+180∘+360∘n−85∘
x=2x+180∘+360∘n−85∘
Move 2xto the left side
x=2x+180∘+360∘n−85∘
Subtract 2x from both sidesx−2x=2x+180∘+360∘n−85∘−2x
Simplify−x=180∘+360∘n−85∘
−x=180∘+360∘n−85∘
Divide both sides by −1
−x=180∘+360∘n−85∘
Divide both sides by −1−1−x​=−1180∘​+−1360∘n​−−185∘​
Simplify
−1−x​=−1180∘​+−1360∘n​−−185∘​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −1180∘​+−1360∘n​−−185∘​:−363420∘+12960∘n​
−1180∘​+−1360∘n​−−185∘​
Apply rule ca​±cb​=ca±b​=−1180∘+360∘n−85∘​
Apply the fraction rule: −ba​=−ba​=−1180∘+360∘n−85∘​
Join 180∘+360∘n−85∘:363420∘+12960∘n​
180∘+360∘n−85∘
Convert element to fraction: 180∘=180∘,360∘n=36360∘n36​=180∘+36360∘n⋅36​−85∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36180∘36+360∘n⋅36−3060∘​
180∘36+360∘n⋅36−3060∘=3420∘+12960∘n
180∘36+360∘n⋅36−3060∘
Add similar elements: 6480∘−3060∘=3420∘=3420∘+2⋅6480∘n
Multiply the numbers: 2⋅36=72=3420∘+12960∘n
=363420∘+12960∘n​
=−1363420∘+12960∘n​​
Apply the fraction rule: 1a​=a=−363420∘+12960∘n​
x=−363420∘+12960∘n​
x=−363420∘+12960∘n​
x=−363420∘+12960∘n​
x=121440∘n+180∘​,x=−363420∘+12960∘n​
x=121440∘n+180∘​,x=−363420∘+12960∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-sin(x)-cos(2x)=0cos(a)= 1/(sqrt(2))sin(2θ)-cos(2θ)=0cos^2(x)+sin(x)=24csc(θ)-5=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+20)=cos(2x+25) ?

    The general solution for sin(x+20)=cos(2x+25) is x=(1440n+180)/(12),x=-(3420+12960n)/(36)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024