Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arccos(x)+arccos(2x)= pi/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arccos(x)+arccos(2x)=2π​

Solution

x=5​1​
Solution steps
arccos(x)+arccos(2x)=2π​
Rewrite using trig identities
arccos(x)+arccos(2x)
Use the Sum to Product identity: arccos(s)+arccos(t)=arccos(st−(1−s2)(1−t2)​)=arccos(x⋅2x−(1−x2)(1−(2x)2)​)
arccos(x⋅2x−(1−x2)(1−(2x)2)​)=2π​
Apply trig inverse properties
arccos(x⋅2x−(1−x2)(1−(2x)2)​)=2π​
arccos(x)=a⇒x=cos(a)x⋅2x−(1−x2)(1−(2x)2)​=cos(2π​)
cos(2π​)=0
cos(2π​)
Use the following trivial identity:cos(2π​)=0
cos(2π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0
x⋅2x−(1−x2)(1−(2x)2)​=0
x⋅2x−(1−x2)(1−(2x)2)​=0
Solve x⋅2x−(1−x2)(1−(2x)2)​=0:x=5​1​,x=−5​1​
x⋅2x−(1−x2)(1−(2x)2)​=0
Expand x⋅2x−(1−x2)(1−(2x)2)​:2x2−1−5x2+4x4​
x⋅2x−(1−x2)(1−(2x)2)​
x⋅2x=2x2
x⋅2x
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=2x1+1
Add the numbers: 1+1=2=2x2
=2x2−(1−x2)(1−(2x)2)​
Expand 2x2−(1−x2)(1−(2x)2)​:2x2−1−5x2+4x4​
2x2−(1−x2)(1−(2x)2)​
(1−x2)(1−(2x)2)​=1−5x2+4x4​
(1−x2)(1−(2x)2)​
(2x)2=4x2
(2x)2
Apply exponent rule: (a⋅b)n=anbn=22x2
22=4=4x2
=(−x2+1)(−4x2+1)​
Expand (1−x2)(1−4x2):1−5x2+4x4
(1−x2)(1−4x2)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=−x2,c=1,d=−4x2=1⋅1+1⋅(−4x2)+(−x2)⋅1+(−x2)(−4x2)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=1⋅1−1⋅4x2−1⋅x2+4x2x2
Simplify 1⋅1−1⋅4x2−1⋅x2+4x2x2:1−5x2+4x4
1⋅1−1⋅4x2−1⋅x2+4x2x2
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
1⋅4x2=4x2
1⋅4x2
Multiply the numbers: 1⋅4=4=4x2
1⋅x2=x2
1⋅x2
Multiply: 1⋅x2=x2=x2
4x2x2=4x4
4x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=4x2+2
Add the numbers: 2+2=4=4x4
=1−4x2−x2+4x4
Add similar elements: −4x2−x2=−5x2=1−5x2+4x4
=1−5x2+4x4
=1−5x2+4x4​
=2x2−4x4−5x2+1​
=2x2−1−5x2+4x4​
2x2−1−5x2+4x4​=0
Remove square roots
2x2−1−5x2+4x4​=0
Subtract 2x2 from both sides2x2−1−5x2+4x4​−2x2=0−2x2
Simplify−1−5x2+4x4​=−2x2
Square both sides:1−5x2+4x4=4x4
2x2−1−5x2+4x4​=0
(−1−5x2+4x4​)2=(−2x2)2
Expand (−1−5x2+4x4​)2:1−5x2+4x4
(−1−5x2+4x4​)2
Apply exponent rule: (−a)n=an,if n is even(−1−5x2+4x4​)2=(1−5x2+4x4​)2=(1−5x2+4x4​)2
Apply radical rule: a​=a21​=((1−5x2+4x4)21​)2
Apply exponent rule: (ab)c=abc=(1−5x2+4x4)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−5x2+4x4
Expand (−2x2)2:4x4
(−2x2)2
Apply exponent rule: (−a)n=an,if n is even(−2x2)2=(2x2)2=(2x2)2
Apply exponent rule: (a⋅b)n=anbn=22(x2)2
(x2)2:x4
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=22x4
22=4=4x4
1−5x2+4x4=4x4
1−5x2+4x4=4x4
1−5x2+4x4=4x4
Solve 1−5x2+4x4=4x4:x=5​1​,x=−5​1​
1−5x2+4x4=4x4
Move 1to the right side
1−5x2+4x4=4x4
Subtract 1 from both sides1−5x2+4x4−1=4x4−1
Simplify−5x2+4x4=4x4−1
−5x2+4x4=4x4−1
Move 4x4to the left side
−5x2+4x4=4x4−1
Subtract 4x4 from both sides−5x2+4x4−4x4=4x4−1−4x4
Simplify−5x2=−1
−5x2=−1
Divide both sides by −5
−5x2=−1
Divide both sides by −5−5−5x2​=−5−1​
Simplifyx2=51​
x2=51​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=51​​,x=−51​​
51​​=5​1​
51​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=5​1​​
Apply radical rule: 1​=11​=1=5​1​
−51​​=−5​1​
−51​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−5​1​​
Apply radical rule: 1​=11​=1=−5​1​
x=5​1​,x=−5​1​
x=5​1​,x=−5​1​
Verify Solutions:x=5​1​True,x=−5​1​True
Check the solutions by plugging them into x⋅2x−(1−x2)(1−(2x)2)​=0
Remove the ones that don't agree with the equation.
Plug in x=5​1​:True
(5​1​)⋅2(5​1​)−(1−(5​1​)2)(1−(2(5​1​))2)​=0
(5​1​)⋅2(5​1​)−(1−(5​1​)2)(1−(2(5​1​))2)​=0
(5​1​)⋅2(5​1​)−(1−(5​1​)2)(1−(2(5​1​))2)​
Remove parentheses: (a)=a=5​1​⋅2⋅5​1​−(1−(5​1​)2)(1−(2⋅5​1​)2)​
5​1​⋅2⋅5​1​=52​
5​1​⋅2⋅5​1​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=5​5​1⋅1⋅2​
Multiply the numbers: 1⋅1⋅2=2=5​5​2​
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=52​
(1−(5​1​)2)(1−(2⋅5​1​)2)​=52​
(1−(5​1​)2)(1−(2⋅5​1​)2)​
(5​1​)2=51​
(5​1​)2
Apply exponent rule: (ba​)c=bcac​=(5​)212​
(5​)2:5
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=512​
Apply rule 1a=112=1=51​
=(−51​+1)(−(2⋅5​1​)2+1)​
(2⋅5​1​)2=54​
(2⋅5​1​)2
Multiply 2⋅5​1​:5​2​
2⋅5​1​
Multiply fractions: a⋅cb​=ca⋅b​=5​1⋅2​
Multiply the numbers: 1⋅2=2=5​2​
=(5​2​)2
Apply exponent rule: (ba​)c=bcac​=(5​)222​
(5​)2:5
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=522​
22=4=54​
=(−51​+1)(−54​+1)​
Join 1−51​:54​
1−51​
Convert element to fraction: 1=51⋅5​=51⋅5​−51​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=51⋅5−1​
1⋅5−1=4
1⋅5−1
Multiply the numbers: 1⋅5=5=5−1
Subtract the numbers: 5−1=4=4
=54​
=54​(−54​+1)​
Join 1−54​:51​
1−54​
Convert element to fraction: 1=51⋅5​=51⋅5​−54​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=51⋅5−4​
1⋅5−4=1
1⋅5−4
Multiply the numbers: 1⋅5=5=5−4
Subtract the numbers: 5−4=1=1
=51​
=54​⋅51​​
Multiply 54​⋅51​:254​
54​⋅51​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=5⋅54⋅1​
Multiply the numbers: 4⋅1=4=5⋅54​
Multiply the numbers: 5⋅5=25=254​
=254​​
Apply radical rule: assuming a≥0,b≥0=25​4​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=54​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=52​
=52​−52​
Add similar elements: 52​−52​=0=0
0=0
True
Plug in x=−5​1​:True
(−5​1​)⋅2(−5​1​)−(1−(−5​1​)2)(1−(2(−5​1​))2)​=0
(−5​1​)⋅2(−5​1​)−(1−(−5​1​)2)(1−(2(−5​1​))2)​=0
(−5​1​)⋅2(−5​1​)−(1−(−5​1​)2)(1−(2(−5​1​))2)​
Remove parentheses: (−a)=−a,−(−a)=a=5​1​⋅2⋅5​1​−(1−(−5​1​)2)(1−(−2⋅5​1​)2)​
5​1​⋅2⋅5​1​=52​
5​1​⋅2⋅5​1​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=5​5​1⋅1⋅2​
Multiply the numbers: 1⋅1⋅2=2=5​5​2​
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=52​
(1−(−5​1​)2)(1−(−2⋅5​1​)2)​=52​
(1−(−5​1​)2)(1−(−2⋅5​1​)2)​
(−5​1​)2=51​
(−5​1​)2
Apply exponent rule: (−a)n=an,if n is even(−5​1​)2=(5​1​)2=(5​1​)2
Apply exponent rule: (ba​)c=bcac​=(5​)212​
(5​)2:5
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=512​
Apply rule 1a=112=1=51​
=(−51​+1)(−(−2⋅5​1​)2+1)​
(−2⋅5​1​)2=54​
(−2⋅5​1​)2
Multiply −2⋅5​1​:−5​2​
−2⋅5​1​
Multiply fractions: a⋅cb​=ca⋅b​=−5​1⋅2​
Multiply the numbers: 1⋅2=2=−5​2​
=(−5​2​)2
Apply exponent rule: (−a)n=an,if n is even(−5​2​)2=(5​2​)2=(5​2​)2
Apply exponent rule: (ba​)c=bcac​=(5​)222​
(5​)2:5
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=522​
22=4=54​
=(−51​+1)(−54​+1)​
Join 1−51​:54​
1−51​
Convert element to fraction: 1=51⋅5​=51⋅5​−51​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=51⋅5−1​
1⋅5−1=4
1⋅5−1
Multiply the numbers: 1⋅5=5=5−1
Subtract the numbers: 5−1=4=4
=54​
=54​(−54​+1)​
Join 1−54​:51​
1−54​
Convert element to fraction: 1=51⋅5​=51⋅5​−54​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=51⋅5−4​
1⋅5−4=1
1⋅5−4
Multiply the numbers: 1⋅5=5=5−4
Subtract the numbers: 5−4=1=1
=51​
=54​⋅51​​
Multiply 54​⋅51​:254​
54​⋅51​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=5⋅54⋅1​
Multiply the numbers: 4⋅1=4=5⋅54​
Multiply the numbers: 5⋅5=25=254​
=254​​
Apply radical rule: assuming a≥0,b≥0=25​4​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=54​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=52​
=52​−52​
Add similar elements: 52​−52​=0=0
0=0
True
The solutions arex=5​1​,x=−5​1​
x=5​1​,x=−5​1​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arccos(x)+arccos(2x)=2π​
Remove the ones that don't agree with the equation.
Check the solution 5​1​:True
5​1​
Plug in n=15​1​
For arccos(x)+arccos(2x)=2π​plug inx=5​1​arccos(5​1​)+arccos(2⋅5​1​)=2π​
Refine1.57079…=1.57079…
⇒True
Check the solution −5​1​:False
−5​1​
Plug in n=1−5​1​
For arccos(x)+arccos(2x)=2π​plug inx=−5​1​arccos(−5​1​)+arccos(2(−5​1​))=2π​
Refine4.71238…=1.57079…
⇒False
x=5​1​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)+sin(x)=cos^2(x)-2-3sin(x)=1-6sin(x)cos(x)=-0.23cos^2(x)-2cos(x)-1=02sin(x)-cos(2x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arccos(x)+arccos(2x)= pi/2 ?

    The general solution for arccos(x)+arccos(2x)= pi/2 is x= 1/(sqrt(5))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024