Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5cosh(x)-3sinh(x)=5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5cosh(x)−3sinh(x)=5

Solution

x=2ln(2),x=0
+1
Degrees
x=79.42881…∘,x=0∘
Solution steps
5cosh(x)−3sinh(x)=5
Rewrite using trig identities
5cosh(x)−3sinh(x)=5
Use the Hyperbolic identity: sinh(x)=2ex−e−x​5cosh(x)−3⋅2ex−e−x​=5
Use the Hyperbolic identity: cosh(x)=2ex+e−x​5⋅2ex+e−x​−3⋅2ex−e−x​=5
5⋅2ex+e−x​−3⋅2ex−e−x​=5
5⋅2ex+e−x​−3⋅2ex−e−x​=5:x=2ln(2),x=0
5⋅2ex+e−x​−3⋅2ex−e−x​=5
Apply exponent rules
5⋅2ex+e−x​−3⋅2ex−e−x​=5
Apply exponent rule: abc=(ab)ce−x=(ex)−15⋅2ex+(ex)−1​−3⋅2ex−(ex)−1​=5
5⋅2ex+(ex)−1​−3⋅2ex−(ex)−1​=5
Rewrite the equation with ex=u5⋅2u+(u)−1​−3⋅2u−(u)−1​=5
Solve 5⋅2u+u−1​−3⋅2u−u−1​=5:u=4,u=1
5⋅2u+u−1​−3⋅2u−u−1​=5
Refine2u5(u2+1)​−2u3(u2−1)​=5
Multiply both sides by 2u
2u5(u2+1)​−2u3(u2−1)​=5
Multiply both sides by 2u2u5(u2+1)​⋅2u−2u3(u2−1)​⋅2u=5⋅2u
Simplify
2u5(u2+1)​⋅2u−2u3(u2−1)​⋅2u=5⋅2u
Simplify 2u5(u2+1)​⋅2u:5(u2+1)
2u5(u2+1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=2u5(u2+1)⋅2u​
Cancel the common factor: 2=u5(u2+1)u​
Cancel the common factor: u=5(u2+1)
Simplify −2u3(u2−1)​⋅2u:−3(u2−1)
−2u3(u2−1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=−2u3(u2−1)⋅2u​
Cancel the common factor: 2=−u3(u2−1)u​
Cancel the common factor: u=−3(u2−1)
Simplify 5⋅2u:10u
5⋅2u
Multiply the numbers: 5⋅2=10=10u
5(u2+1)−3(u2−1)=10u
5(u2+1)−3(u2−1)=10u
5(u2+1)−3(u2−1)=10u
Solve 5(u2+1)−3(u2−1)=10u:u=4,u=1
5(u2+1)−3(u2−1)=10u
Expand 5(u2+1)−3(u2−1):2u2+8
5(u2+1)−3(u2−1)
Expand 5(u2+1):5u2+5
5(u2+1)
Apply the distributive law: a(b+c)=ab+aca=5,b=u2,c=1=5u2+5⋅1
Multiply the numbers: 5⋅1=5=5u2+5
=5u2+5−3(u2−1)
Expand −3(u2−1):−3u2+3
−3(u2−1)
Apply the distributive law: a(b−c)=ab−aca=−3,b=u2,c=1=−3u2−(−3)⋅1
Apply minus-plus rules−(−a)=a=−3u2+3⋅1
Multiply the numbers: 3⋅1=3=−3u2+3
=5u2+5−3u2+3
Simplify 5u2+5−3u2+3:2u2+8
5u2+5−3u2+3
Group like terms=5u2−3u2+5+3
Add similar elements: 5u2−3u2=2u2=2u2+5+3
Add the numbers: 5+3=8=2u2+8
=2u2+8
2u2+8=10u
Move 10uto the left side
2u2+8=10u
Subtract 10u from both sides2u2+8−10u=10u−10u
Simplify2u2+8−10u=0
2u2+8−10u=0
Write in the standard form ax2+bx+c=02u2−10u+8=0
Solve with the quadratic formula
2u2−10u+8=0
Quadratic Equation Formula:
For a=2,b=−10,c=8u1,2​=2⋅2−(−10)±(−10)2−4⋅2⋅8​​
u1,2​=2⋅2−(−10)±(−10)2−4⋅2⋅8​​
(−10)2−4⋅2⋅8​=6
(−10)2−4⋅2⋅8​
Apply exponent rule: (−a)n=an,if n is even(−10)2=102=102−4⋅2⋅8​
Multiply the numbers: 4⋅2⋅8=64=102−64​
102=100=100−64​
Subtract the numbers: 100−64=36=36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
u1,2​=2⋅2−(−10)±6​
Separate the solutionsu1​=2⋅2−(−10)+6​,u2​=2⋅2−(−10)−6​
u=2⋅2−(−10)+6​:4
2⋅2−(−10)+6​
Apply rule −(−a)=a=2⋅210+6​
Add the numbers: 10+6=16=2⋅216​
Multiply the numbers: 2⋅2=4=416​
Divide the numbers: 416​=4=4
u=2⋅2−(−10)−6​:1
2⋅2−(−10)−6​
Apply rule −(−a)=a=2⋅210−6​
Subtract the numbers: 10−6=4=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=4,u=1
u=4,u=1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 52u+u−1​−32u−u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=4,u=1
u=4,u=1
Substitute back u=ex,solve for x
Solve ex=4:x=2ln(2)
ex=4
Apply exponent rules
ex=4
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(4)
Apply log rule: ln(ea)=aln(ex)=xx=ln(4)
Simplify ln(4):2ln(2)
ln(4)
Rewrite 4 in power-base form:4=22=ln(22)
Apply log rule: loga​(xb)=b⋅loga​(x)ln(22)=2ln(2)=2ln(2)
x=2ln(2)
x=2ln(2)
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
x=2ln(2),x=0
x=2ln(2),x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)cos(x)-cos(x)=0sin(2θ)=(sqrt(3))/2 ,0<= θ<= 2pi-6sin^2(x)=cos(2x)-2(sin(x))/(sin(2x))= 1/2-4cos(2θ)-19=-26cos(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 5cosh(x)-3sinh(x)=5 ?

    The general solution for 5cosh(x)-3sinh(x)=5 is x=2ln(2),x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024