Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/2 sinh(2x)-4/5 cosh(2x)+1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

21​sinh(2x)−54​cosh(2x)+1=0

Solution

x=21​ln(310−61​​),x=21​ln(310+61​​)
+1
Degrees
x=−9.01906…∘,x=51.02652…∘
Solution steps
21​sinh(2x)−54​cosh(2x)+1=0
Rewrite using trig identities
21​sinh(2x)−54​cosh(2x)+1=0
Use the Hyperbolic identity: sinh(x)=2ex−e−x​21​⋅2e2x−e−2x​−54​cosh(2x)+1=0
Use the Hyperbolic identity: cosh(x)=2ex+e−x​21​⋅2e2x−e−2x​−54​⋅2e2x+e−2x​+1=0
21​⋅2e2x−e−2x​−54​⋅2e2x+e−2x​+1=0
21​⋅2e2x−e−2x​−54​⋅2e2x+e−2x​+1=0:x=21​ln(310−61​​),x=21​ln(310+61​​)
21​⋅2e2x−e−2x​−54​⋅2e2x+e−2x​+1=0
Find Least Common Multiplier of 4,10:20
4,10
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 4 or 10=2⋅2⋅5
Multiply the numbers: 2⋅2⋅5=20=20
Multiply by LCM=2021​⋅2e2x−e−2x​⋅20−54​⋅2e2x+e−2x​⋅20+1⋅20=0⋅20
Simplify5(e2x−e−2x)−8(e2x+e−2x)+20=0
Apply exponent rules
5(e2x−e−2x)−8(e2x+e−2x)+20=0
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−25((ex)2−(ex)−2)−8((ex)2+(ex)−2)+20=0
5((ex)2−(ex)−2)−8((ex)2+(ex)−2)+20=0
Rewrite the equation with ex=u5((u)2−(u)−2)−8((u)2+(u)−2)+20=0
Solve 5(u2−u−2)−8(u2+u−2)+20=0:u=310−61​​​,u=−310−61​​​,u=310+61​​​,u=−310+61​​​
5(u2−u−2)−8(u2+u−2)+20=0
Refine5(u2−u21​)−8(u2+u21​)+20=0
Expand 5(u2−u21​)−8(u2+u21​)+20:−3u2−u213​+20
5(u2−u21​)−8(u2+u21​)+20
Expand 5(u2−u21​):5u2−u25​
5(u2−u21​)
Apply the distributive law: a(b−c)=ab−aca=5,b=u2,c=u21​=5u2−5⋅u21​
5⋅u21​=u25​
5⋅u21​
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅5​
Multiply the numbers: 1⋅5=5=u25​
=5u2−u25​
=5u2−u25​−8(u2+u21​)+20
Expand −8(u2+u21​):−8u2−u28​
−8(u2+u21​)
Apply the distributive law: a(b+c)=ab+aca=−8,b=u2,c=u21​=−8u2+(−8)u21​
Apply minus-plus rules+(−a)=−a=−8u2−8⋅u21​
8⋅u21​=u28​
8⋅u21​
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅8​
Multiply the numbers: 1⋅8=8=u28​
=−8u2−u28​
=5u2−u25​−8u2−u28​+20
Simplify 5u2−u25​−8u2−u28​+20:−3u2−u213​+20
5u2−u25​−8u2−u28​+20
Group like terms=5u2−8u2−u25​−u28​+20
Combine the fractions −u25​−u28​:−u213​
Apply rule ca​±cb​=ca±b​=u2−5−8​
Subtract the numbers: −5−8=−13=u2−13​
Apply the fraction rule: b−a​=−ba​=−u213​
=5u2−8u2−u213​+20
Add similar elements: 5u2−8u2=−3u2=−3u2−u213​+20
=−3u2−u213​+20
−3u2−u213​+20=0
Multiply both sides by u2
−3u2−u213​+20=0
Multiply both sides by u2−3u2u2−u213​u2+20u2=0⋅u2
Simplify
−3u2u2−u213​u2+20u2=0⋅u2
Simplify −3u2u2:−3u4
−3u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=−3u2+2
Add the numbers: 2+2=4=−3u4
Simplify −u213​u2:−13
−u213​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u213u2​
Cancel the common factor: u2=−13
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
−3u4−13+20u2=0
−3u4−13+20u2=0
−3u4−13+20u2=0
Solve −3u4−13+20u2=0:u=310−61​​​,u=−310−61​​​,u=310+61​​​,u=−310+61​​​
−3u4−13+20u2=0
Write in the standard form an​xn+…+a1​x+a0​=0−3u4+20u2−13=0
Rewrite the equation with v=u2 and v2=u4−3v2+20v−13=0
Solve −3v2+20v−13=0:v=310−61​​,v=310+61​​
−3v2+20v−13=0
Solve with the quadratic formula
−3v2+20v−13=0
Quadratic Equation Formula:
For a=−3,b=20,c=−13v1,2​=2(−3)−20±202−4(−3)(−13)​​
v1,2​=2(−3)−20±202−4(−3)(−13)​​
202−4(−3)(−13)​=261​
202−4(−3)(−13)​
Apply rule −(−a)=a=202−4⋅3⋅13​
Multiply the numbers: 4⋅3⋅13=156=202−156​
202=400=400−156​
Subtract the numbers: 400−156=244=244​
Prime factorization of 244:22⋅61
244
244divides by 2244=122⋅2=2⋅122
122divides by 2122=61⋅2=2⋅2⋅61
2,61 are all prime numbers, therefore no further factorization is possible=2⋅2⋅61
=22⋅61
=22⋅61​
Apply radical rule: =61​22​
Apply radical rule: 22​=2=261​
v1,2​=2(−3)−20±261​​
Separate the solutionsv1​=2(−3)−20+261​​,v2​=2(−3)−20−261​​
v=2(−3)−20+261​​:310−61​​
2(−3)−20+261​​
Remove parentheses: (−a)=−a=−2⋅3−20+261​​
Multiply the numbers: 2⋅3=6=−6−20+261​​
Apply the fraction rule: −b−a​=ba​−20+261​=−(20−261​)=620−261​​
Factor 20−261​:2(10−61​)
20−261​
Rewrite as=2⋅10−261​
Factor out common term 2=2(10−61​)
=62(10−61​)​
Cancel the common factor: 2=310−61​​
v=2(−3)−20−261​​:310+61​​
2(−3)−20−261​​
Remove parentheses: (−a)=−a=−2⋅3−20−261​​
Multiply the numbers: 2⋅3=6=−6−20−261​​
Apply the fraction rule: −b−a​=ba​−20−261​=−(20+261​)=620+261​​
Factor 20+261​:2(10+61​)
20+261​
Rewrite as=2⋅10+261​
Factor out common term 2=2(10+61​)
=62(10+61​)​
Cancel the common factor: 2=310+61​​
The solutions to the quadratic equation are:v=310−61​​,v=310+61​​
v=310−61​​,v=310+61​​
Substitute back v=u2,solve for u
Solve u2=310−61​​:u=310−61​​​,u=−310−61​​​
u2=310−61​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=310−61​​​,u=−310−61​​​
Solve u2=310+61​​:u=310+61​​​,u=−310+61​​​
u2=310+61​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=310+61​​​,u=−310+61​​​
The solutions are
u=310−61​​​,u=−310−61​​​,u=310+61​​​,u=−310+61​​​
u=310−61​​​,u=−310−61​​​,u=310+61​​​,u=−310+61​​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 5(u2−u−2)−8(u2+u−2)+20 and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=310−61​​​,u=−310−61​​​,u=310+61​​​,u=−310+61​​​
u=310−61​​​,u=−310−61​​​,u=310+61​​​,u=−310+61​​​
Substitute back u=ex,solve for x
Solve ex=310−61​​​:x=21​ln(310−61​​)
ex=310−61​​​
Apply exponent rules
ex=310−61​​​
Apply exponent rule: a​=a21​310−61​​​=(310−61​​)21​ex=(310−61​​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln​(310−61​​)21​​
Apply log rule: ln(ea)=aln(ex)=xx=ln​(310−61​​)21​​
Apply log rule: ln(xa)=a⋅ln(x)ln​(310−61​​)21​​=21​ln(310−61​​)x=21​ln(310−61​​)
x=21​ln(310−61​​)
Solve ex=−310−61​​​:No Solution for x∈R
ex=−310−61​​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=310+61​​​:x=21​ln(310+61​​)
ex=310+61​​​
Apply exponent rules
ex=310+61​​​
Apply exponent rule: a​=a21​310+61​​​=(310+61​​)21​ex=(310+61​​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln​(310+61​​)21​​
Apply log rule: ln(ea)=aln(ex)=xx=ln​(310+61​​)21​​
Apply log rule: ln(xa)=a⋅ln(x)ln​(310+61​​)21​​=21​ln(310+61​​)x=21​ln(310+61​​)
x=21​ln(310+61​​)
Solve ex=−310+61​​​:No Solution for x∈R
ex=−310+61​​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=21​ln(310−61​​),x=21​ln(310+61​​)
x=21​ln(310−61​​),x=21​ln(310+61​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

7sin^2(x)+2sin(x)-2=03cos(θ)-1=-12-4cos(x)=0csc(2x)-4=08cos(2x)=4sqrt(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024