Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(4cos(θ))=1-cos(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos(θ)​=1−cos(θ)

Solution

θ=1.39837…+2πn,θ=2π−1.39837…+2πn
+1
Degrees
θ=80.12071…∘+360∘n,θ=279.87928…∘+360∘n
Solution steps
4cos(θ)​=1−cos(θ)
Solve by substitution
4cos(θ)​=1−cos(θ)
Let: cos(θ)=u4u​=1−u
4u​=1−u:u=3−22​
4u​=1−u
Square both sides:4u=1−2u+u2
4u​=1−u
(4u​)2=(1−u)2
Expand (4u​)2:4u
(4u​)2
Apply radical rule: a​=a21​=((4u)21​)2
Apply exponent rule: (ab)c=abc=(4u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=4u
Expand (1−u)2:1−2u+u2
(1−u)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=u
=12−2⋅1⋅u+u2
Simplify 12−2⋅1⋅u+u2:1−2u+u2
12−2⋅1⋅u+u2
Apply rule 1a=112=1=1−2⋅1⋅u+u2
Multiply the numbers: 2⋅1=2=1−2u+u2
=1−2u+u2
4u=1−2u+u2
4u=1−2u+u2
Solve 4u=1−2u+u2:u=3+22​,u=3−22​
4u=1−2u+u2
Switch sides1−2u+u2=4u
Move 4uto the left side
1−2u+u2=4u
Subtract 4u from both sides1−2u+u2−4u=4u−4u
Simplifyu2−6u+1=0
u2−6u+1=0
Solve with the quadratic formula
u2−6u+1=0
Quadratic Equation Formula:
For a=1,b=−6,c=1u1,2​=2⋅1−(−6)±(−6)2−4⋅1⋅1​​
u1,2​=2⋅1−(−6)±(−6)2−4⋅1⋅1​​
(−6)2−4⋅1⋅1​=42​
(−6)2−4⋅1⋅1​
Apply exponent rule: (−a)n=an,if n is even(−6)2=62=62−4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=62−4​
62=36=36−4​
Subtract the numbers: 36−4=32=32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
u1,2​=2⋅1−(−6)±42​​
Separate the solutionsu1​=2⋅1−(−6)+42​​,u2​=2⋅1−(−6)−42​​
u=2⋅1−(−6)+42​​:3+22​
2⋅1−(−6)+42​​
Apply rule −(−a)=a=2⋅16+42​​
Multiply the numbers: 2⋅1=2=26+42​​
Factor 6+42​:2(3+22​)
6+42​
Rewrite as=2⋅3+2⋅22​
Factor out common term 2=2(3+22​)
=22(3+22​)​
Divide the numbers: 22​=1=3+22​
u=2⋅1−(−6)−42​​:3−22​
2⋅1−(−6)−42​​
Apply rule −(−a)=a=2⋅16−42​​
Multiply the numbers: 2⋅1=2=26−42​​
Factor 6−42​:2(3−22​)
6−42​
Rewrite as=2⋅3−2⋅22​
Factor out common term 2=2(3−22​)
=22(3−22​)​
Divide the numbers: 22​=1=3−22​
The solutions to the quadratic equation are:u=3+22​,u=3−22​
u=3+22​,u=3−22​
Verify Solutions:u=3+22​False,u=3−22​True
Check the solutions by plugging them into 4u​=1−u
Remove the ones that don't agree with the equation.
Plug in u=3+22​:False
4(3+22​)​=1−(3+22​)
1−(3+22​)=−2−22​
1−(3+22​)
−(3+22​):−3−22​
−(3+22​)
Distribute parentheses=−(3)−(22​)
Apply minus-plus rules+(−a)=−a=−3−22​
=1−3−22​
Subtract the numbers: 1−3=−2=−2−22​
4(3+22​)​=−2−22​
False
Plug in u=3−22​:True
4(3−22​)​=1−(3−22​)
1−(3−22​)=22​−2
1−(3−22​)
−(3−22​):−3+22​
−(3−22​)
Distribute parentheses=−(3)−(−22​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−3+22​
=1−3+22​
Subtract the numbers: 1−3=−2=22​−2
4(3−22​)​=22​−2
True
The solution isu=3−22​
Substitute back u=cos(θ)cos(θ)=3−22​
cos(θ)=3−22​
cos(θ)=3−22​:θ=arccos(3−22​)+2πn,θ=2π−arccos(3−22​)+2πn
cos(θ)=3−22​
Apply trig inverse properties
cos(θ)=3−22​
General solutions for cos(θ)=3−22​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(3−22​)+2πn,θ=2π−arccos(3−22​)+2πn
θ=arccos(3−22​)+2πn,θ=2π−arccos(3−22​)+2πn
Combine all the solutionsθ=arccos(3−22​)+2πn,θ=2π−arccos(3−22​)+2πn
Show solutions in decimal formθ=1.39837…+2πn,θ=2π−1.39837…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x/3)=0cos(x)=0.952cos(2θ)+2cos(θ)+2=3cos(θ)1+csc(x)=cot^2(x)cos(1/(4θ))=(-sqrt(2))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(4cos(θ))=1-cos(θ) ?

    The general solution for sqrt(4cos(θ))=1-cos(θ) is θ=1.39837…+2pin,θ=2pi-1.39837…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024