Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2θ-10)=cot(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2θ−10∘)=cot(θ)

Solution

θ=33.33333…∘+3360∘n​,θ=93.33333…∘+3360∘n​
+1
Radians
θ=275π​+32π​n,θ=2714π​+32π​n
Solution steps
tan(2θ−10∘)=cot(θ)
Subtract cot(θ) from both sidestan(2θ−10∘)−cot(θ)=0
Express with sin, cos
−cot(θ)+tan(−10∘+2θ)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(θ)cos(θ)​+tan(−10∘+2θ)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(θ)cos(θ)​+cos(−10∘+2θ)sin(−10∘+2θ)​
Simplify −sin(θ)cos(θ)​+cos(−10∘+2θ)sin(−10∘+2θ)​:sin(θ)cos(1836θ−180∘​)−cos(θ)cos(1836θ−180∘​)+sin(18−180∘+36θ​)sin(θ)​
−sin(θ)cos(θ)​+cos(−10∘+2θ)sin(−10∘+2θ)​
cos(−10∘+2θ)sin(−10∘+2θ)​=cos(18−180∘+36θ​)sin(18−180∘+36θ​)​
cos(−10∘+2θ)sin(−10∘+2θ)​
Join −10∘+2θ:18−180∘+36θ​
−10∘+2θ
Convert element to fraction: 2θ=182θ18​=−10∘+182θ⋅18​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18−180∘+2θ⋅18​
Multiply the numbers: 2⋅18=36=18−180∘+36θ​
=cos(18−180∘+36θ​)sin(−10∘+2θ)​
Join −10∘+2θ:18−180∘+36θ​
−10∘+2θ
Convert element to fraction: 2θ=182θ18​=−10∘+182θ⋅18​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18−180∘+2θ⋅18​
Multiply the numbers: 2⋅18=36=18−180∘+36θ​
=cos(18−180∘+36θ​)sin(18−180∘+36θ​)​
=−sin(θ)cos(θ)​+cos(1836θ−180∘​)sin(1836θ−180∘​)​
Least Common Multiplier of sin(θ),cos(18−180∘+36θ​):sin(θ)cos(1836θ−180∘​)
sin(θ),cos(18−180∘+36θ​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(θ) or cos(18−180∘+36θ​)=sin(θ)cos(1836θ−180∘​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(θ)cos(1836θ−180∘​)
For sin(θ)cos(θ)​:multiply the denominator and numerator by cos(1836θ−180∘​)sin(θ)cos(θ)​=sin(θ)cos(1836θ−180∘​)cos(θ)cos(1836θ−180∘​)​
For cos(18−180∘+36θ​)sin(18−180∘+36θ​)​:multiply the denominator and numerator by sin(θ)cos(18−180∘+36θ​)sin(18−180∘+36θ​)​=cos(18−180∘+36θ​)sin(θ)sin(18−180∘+36θ​)sin(θ)​
=−sin(θ)cos(1836θ−180∘​)cos(θ)cos(1836θ−180∘​)​+cos(18−180∘+36θ​)sin(θ)sin(18−180∘+36θ​)sin(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(θ)cos(1836θ−180∘​)−cos(θ)cos(1836θ−180∘​)+sin(18−180∘+36θ​)sin(θ)​
=sin(θ)cos(1836θ−180∘​)−cos(θ)cos(1836θ−180∘​)+sin(18−180∘+36θ​)sin(θ)​
cos(18−180∘+36θ​)sin(θ)−cos(18−180∘+36θ​)cos(θ)+sin(18−180∘+36θ​)sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0−cos(18−180∘+36θ​)cos(θ)+sin(18−180∘+36θ​)sin(θ)=0
Rewrite using trig identities
−cos(18−180∘+36θ​)cos(θ)+sin(18−180∘+36θ​)sin(θ)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)−cos(s)cos(t)+sin(s)sin(t)=−cos(s+t)=−cos(18−180∘+36θ​+θ)
−cos(18−180∘+36θ​+θ)=0
Divide both sides by −1
−cos(18−180∘+36θ​+θ)=0
Divide both sides by −1−1−cos(18−180∘+36θ​+θ)​=−10​
Simplifycos(18−180∘+36θ​+θ)=0
cos(18−180∘+36θ​+θ)=0
General solutions for cos(18−180∘+36θ​+θ)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
18−180∘+36θ​+θ=90∘+360∘n,18−180∘+36θ​+θ=270∘+360∘n
18−180∘+36θ​+θ=90∘+360∘n,18−180∘+36θ​+θ=270∘+360∘n
Solve 18−180∘+36θ​+θ=90∘+360∘n:θ=33.33333…∘+3360∘n​
18−180∘+36θ​+θ=90∘+360∘n
Multiply both sides by 18
18−180∘+36θ​+θ=90∘+360∘n
Multiply both sides by 1818−180∘+36θ​⋅18+θ⋅18=90∘⋅18+360∘n⋅18
Simplify
18−180∘+36θ​⋅18+θ⋅18=90∘⋅18+360∘n⋅18
Simplify 18−180∘+36θ​⋅18:−180∘+36θ
18−180∘+36θ​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=18(−180∘+36θ)⋅18​
Cancel the common factor: 18=−−180∘+36θ
Simplify θ⋅18:18θ
θ⋅18
Apply the commutative law: θ⋅18=18θ18θ
Simplify 90∘⋅18:1620∘
90∘⋅18
Multiply fractions: a⋅cb​=ca⋅b​=1620∘
Divide the numbers: 218​=9=1620∘
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
−180∘+36θ+18θ=1620∘+6480∘n
−180∘+54θ=1620∘+6480∘n
−180∘+54θ=1620∘+6480∘n
−180∘+54θ=1620∘+6480∘n
Move 180∘to the right side
−180∘+54θ=1620∘+6480∘n
Add 180∘ to both sides−180∘+54θ+180∘=1620∘+6480∘n+180∘
Simplify54θ=1800∘+6480∘n
54θ=1800∘+6480∘n
Divide both sides by 54
54θ=1800∘+6480∘n
Divide both sides by 545454θ​=33.33333…∘+546480∘n​
Simplify
5454θ​=33.33333…∘+546480∘n​
Simplify 5454θ​:θ
5454θ​
Divide the numbers: 5454​=1=θ
Simplify 33.33333…∘+546480∘n​:33.33333…∘+3360∘n​
33.33333…∘+546480∘n​
Cancel 33.33333…∘:33.33333…∘
33.33333…∘
Cancel the common factor: 2=33.33333…∘
=33.33333…∘+546480∘n​
Cancel 546480∘n​:3360∘n​
546480∘n​
Cancel the common factor: 18=3360∘n​
=33.33333…∘+3360∘n​
θ=33.33333…∘+3360∘n​
θ=33.33333…∘+3360∘n​
θ=33.33333…∘+3360∘n​
Solve 18−180∘+36θ​+θ=270∘+360∘n:θ=93.33333…∘+3360∘n​
18−180∘+36θ​+θ=270∘+360∘n
Multiply both sides by 18
18−180∘+36θ​+θ=270∘+360∘n
Multiply both sides by 1818−180∘+36θ​⋅18+θ⋅18=270∘⋅18+360∘n⋅18
Simplify
18−180∘+36θ​⋅18+θ⋅18=270∘⋅18+360∘n⋅18
Simplify 18−180∘+36θ​⋅18:−180∘+36θ
18−180∘+36θ​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=18(−180∘+36θ)⋅18​
Cancel the common factor: 18=−−180∘+36θ
Simplify θ⋅18:18θ
θ⋅18
Apply the commutative law: θ⋅18=18θ18θ
Simplify 270∘⋅18:4860∘
270∘⋅18
Multiply fractions: a⋅cb​=ca⋅b​=4860∘
Multiply the numbers: 3⋅18=54=4860∘
Divide the numbers: 254​=27=4860∘
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
−180∘+36θ+18θ=4860∘+6480∘n
−180∘+54θ=4860∘+6480∘n
−180∘+54θ=4860∘+6480∘n
−180∘+54θ=4860∘+6480∘n
Move 180∘to the right side
−180∘+54θ=4860∘+6480∘n
Add 180∘ to both sides−180∘+54θ+180∘=4860∘+6480∘n+180∘
Simplify54θ=5040∘+6480∘n
54θ=5040∘+6480∘n
Divide both sides by 54
54θ=5040∘+6480∘n
Divide both sides by 545454θ​=93.33333…∘+546480∘n​
Simplify
5454θ​=93.33333…∘+546480∘n​
Simplify 5454θ​:θ
5454θ​
Divide the numbers: 5454​=1=θ
Simplify 93.33333…∘+546480∘n​:93.33333…∘+3360∘n​
93.33333…∘+546480∘n​
Cancel 93.33333…∘:93.33333…∘
93.33333…∘
Cancel the common factor: 2=93.33333…∘
=93.33333…∘+546480∘n​
Cancel 546480∘n​:3360∘n​
546480∘n​
Cancel the common factor: 18=3360∘n​
=93.33333…∘+3360∘n​
θ=93.33333…∘+3360∘n​
θ=93.33333…∘+3360∘n​
θ=93.33333…∘+3360∘n​
θ=33.33333…∘+3360∘n​,θ=93.33333…∘+3360∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sinh(x)=42cos^2(θ)-3cos(θ)+1=0,0<= θ<2picos(x)sin(x)=124arctan(x)=4picos^2(x)-sin(x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2θ-10)=cot(θ) ?

    The general solution for tan(2θ-10)=cot(θ) is θ=33.33333…+(360n)/3 ,θ=93.33333…+(360n)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024