Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sech^2(x)+tanh(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sech2(x)+tanh(x)=0

Solution

x=21​ln(−4+17​)
+1
Degrees
x=−60.00909…∘
Solution steps
2sech2(x)+tanh(x)=0
Rewrite using trig identities
2sech2(x)+tanh(x)=0
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​2sech2(x)+ex+e−xex−e−x​=0
Use the Hyperbolic identity: sech(x)=ex+e−x2​2(ex+e−x2​)2+ex+e−xex−e−x​=0
2(ex+e−x2​)2+ex+e−xex−e−x​=0
2(ex+e−x2​)2+ex+e−xex−e−x​=0:x=21​ln(−4+17​)
2(ex+e−x2​)2+ex+e−xex−e−x​=0
Multiply both sides by ex+e−x2(ex+e−x2​)2(ex+e−x)+ex+e−xex−e−x​(ex+e−x)=0⋅(ex+e−x)
Simplify 2(ex+e−x2​)2(ex+e−x)+ex+e−xex−e−x​(ex+e−x):ex+e−x8​+ex−e−x
2(ex+e−x2​)2(ex+e−x)+ex+e−xex−e−x​(ex+e−x)
2(ex+e−x2​)2(ex+e−x)=ex+e−x8​
2(ex+e−x2​)2(ex+e−x)
(ex+e−x2​)2=(ex+e−x)222​
(ex+e−x2​)2
Apply exponent rule: (ba​)c=bcac​=(ex+e−x)222​
=2⋅(ex+e−x)222​(ex+e−x)
Multiply fractions: a⋅cb​=ca⋅b​=(ex+e−x)222⋅2(ex+e−x)​
22⋅2(ex+e−x)=23(ex+e−x)
22⋅2(ex+e−x)
Apply exponent rule: ab⋅ac=ab+c22⋅2=22+1=22+1(ex+e−x)
Add the numbers: 2+1=3=23(ex+e−x)
=(ex+e−x)223(ex+e−x)​
Cancel the common factor: ex+e−x=ex+e−x23​
23=8=ex+e−x8​
ex+e−xex−e−x​(ex+e−x)=ex−e−x
ex+e−xex−e−x​(ex+e−x)
Multiply fractions: a⋅cb​=ca⋅b​=ex+e−x(ex−e−x)(ex+e−x)​
Cancel the common factor: ex+e−x=ex−e−x
=ex+e−x8​+ex−e−x
ex+e−x8​+ex−e−x=0
Apply exponent rules
ex+e−x8​+ex−e−x=0
Apply exponent rule: abc=(ab)ce−x=(ex)−1ex+(ex)−18​+ex−(ex)−1=0
ex+(ex)−18​+ex−(ex)−1=0
Rewrite the equation with ex=uu+(u)−18​+u−(u)−1=0
Solve u+u−18​+u−u−1=0:u=−4+17​​,u=−−4+17​​
u+u−18​+u−u−1=0
Refineu2+18u​+u−u1​=0
Multiply by LCM
u2+18u​+u−u1​=0
Find Least Common Multiplier of u2+1,u:u(u2+1)
u2+1,u
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u2+1 or u=u(u2+1)
Multiply by LCM=u(u2+1)u2+18u​u(u2+1)+uu(u2+1)−u1​u(u2+1)=0⋅u(u2+1)
Simplify
u2+18u​u(u2+1)+uu(u2+1)−u1​u(u2+1)=0⋅u(u2+1)
Simplify u2+18u​u(u2+1):8u2
u2+18u​u(u2+1)
Multiply fractions: a⋅cb​=ca⋅b​=u2+18uu(u2+1)​
Cancel the common factor: u2+1=8uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=8u1+1
Add the numbers: 1+1=2=8u2
Simplify uu(u2+1):u2(u2+1)
uu(u2+1)
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1(u2+1)
Add the numbers: 1+1=2=u2(u2+1)
Simplify −u1​u(u2+1):−(u2+1)
−u1​u(u2+1)
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u(u2+1)​
Cancel the common factor: u=−1⋅(u2+1)
Multiply: 1⋅(u2+1)=(u2+1)=−(u2+1)
Simplify 0⋅u(u2+1):0
0⋅u(u2+1)
Apply rule 0⋅a=0=0
8u2+u2(u2+1)−(u2+1)=0
8u2+u2(u2+1)−(u2+1)=0
8u2+u2(u2+1)−(u2+1)=0
Solve 8u2+u2(u2+1)−(u2+1)=0:u=−4+17​​,u=−−4+17​​
8u2+u2(u2+1)−(u2+1)=0
Expand 8u2+u2(u2+1)−(u2+1):u4+8u2−1
8u2+u2(u2+1)−(u2+1)
Expand u2(u2+1):u4+u2
u2(u2+1)
Apply the distributive law: a(b+c)=ab+aca=u2,b=u2,c=1=u2u2+u2⋅1
=u2u2+1⋅u2
Simplify u2u2+1⋅u2:u4+u2
u2u2+1⋅u2
u2u2=u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
1⋅u2=u2
1⋅u2
Multiply: 1⋅u2=u2=u2
=u4+u2
=u4+u2
=8u2+u4+u2−(u2+1)
−(u2+1):−u2−1
−(u2+1)
Distribute parentheses=−(u2)−(1)
Apply minus-plus rules+(−a)=−a=−u2−1
=8u2+u4+u2−u2−1
Simplify 8u2+u4+u2−u2−1:u4+8u2−1
8u2+u4+u2−u2−1
Group like terms=u4+8u2+u2−u2−1
Add similar elements: 8u2+u2−u2=8u2=u4+8u2−1
=u4+8u2−1
u4+8u2−1=0
Rewrite the equation with v=u2 and v2=u4v2+8v−1=0
Solve v2+8v−1=0:v=−4+17​,v=−4−17​
v2+8v−1=0
Solve with the quadratic formula
v2+8v−1=0
Quadratic Equation Formula:
For a=1,b=8,c=−1v1,2​=2⋅1−8±82−4⋅1⋅(−1)​​
v1,2​=2⋅1−8±82−4⋅1⋅(−1)​​
82−4⋅1⋅(−1)​=217​
82−4⋅1⋅(−1)​
Apply rule −(−a)=a=82+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=82+4​
82=64=64+4​
Add the numbers: 64+4=68=68​
Prime factorization of 68:22⋅17
68
68divides by 268=34⋅2=2⋅34
34divides by 234=17⋅2=2⋅2⋅17
2,17 are all prime numbers, therefore no further factorization is possible=2⋅2⋅17
=22⋅17
=22⋅17​
Apply radical rule: =17​22​
Apply radical rule: 22​=2=217​
v1,2​=2⋅1−8±217​​
Separate the solutionsv1​=2⋅1−8+217​​,v2​=2⋅1−8−217​​
v=2⋅1−8+217​​:−4+17​
2⋅1−8+217​​
Multiply the numbers: 2⋅1=2=2−8+217​​
Factor −8+217​:2(−4+17​)
−8+217​
Rewrite as=−2⋅4+217​
Factor out common term 2=2(−4+17​)
=22(−4+17​)​
Divide the numbers: 22​=1=−4+17​
v=2⋅1−8−217​​:−4−17​
2⋅1−8−217​​
Multiply the numbers: 2⋅1=2=2−8−217​​
Factor −8−217​:−2(4+17​)
−8−217​
Rewrite as=−2⋅4−217​
Factor out common term 2=−2(4+17​)
=−22(4+17​)​
Divide the numbers: 22​=1=−(4+17​)
Negate −(4+17​)=−4−17​=−4−17​
The solutions to the quadratic equation are:v=−4+17​,v=−4−17​
v=−4+17​,v=−4−17​
Substitute back v=u2,solve for u
Solve u2=−4+17​:u=−4+17​​,u=−−4+17​​
u2=−4+17​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−4+17​​,u=−−4+17​​
Solve u2=−4−17​:No Solution for u∈R
u2=−4−17​
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
u=−4+17​​,u=−−4+17​​
u=−4+17​​,u=−−4+17​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u+u−18​+u−u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−4+17​​,u=−−4+17​​
u=−4+17​​,u=−−4+17​​
Substitute back u=ex,solve for x
Solve ex=−4+17​​:x=21​ln(−4+17​)
ex=−4+17​​
Apply exponent rules
ex=−4+17​​
Apply exponent rule: a​=a21​−4+17​​=(−4+17​)21​ex=(−4+17​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln((−4+17​)21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln((−4+17​)21​)
Apply log rule: ln(xa)=a⋅ln(x)ln((−4+17​)21​)=21​ln(−4+17​)x=21​ln(−4+17​)
x=21​ln(−4+17​)
Solve ex=−−4+17​​:No Solution for x∈R
ex=−−4+17​​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=21​ln(−4+17​)
Verify Solutions:x=21​ln(−4+17​)True
Check the solutions by plugging them into 2(ex+e−x2​)2+ex+e−xex−e−x​=0
Remove the ones that don't agree with the equation.
Plug in x=21​ln(−4+17​):True
2(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2+e21​ln(−4+17​)+e−21​ln(−4+17​)e21​ln(−4+17​)−e−21​ln(−4+17​)​=0
2(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2+e21​ln(−4+17​)+e−21​ln(−4+17​)e21​ln(−4+17​)−e−21​ln(−4+17​)​=0
2(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2+e21​ln(−4+17​)+e−21​ln(−4+17​)e21​ln(−4+17​)−e−21​ln(−4+17​)​
2(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2=13−317​4(17​−4)​
2(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2
(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2=13−317​2(17​−4)​
(e21​ln(−4+17​)+e−21​ln(−4+17​)2​)2
e21​ln(−4+17​)+e−21​ln(−4+17​)2​=17​−32−4+17​​​
e21​ln(−4+17​)+e−21​ln(−4+17​)2​
e21​ln(−4+17​)=−4+17​​
e21​ln(−4+17​)
Apply exponent rule: abc=(ab)c=eln(−4+17​)​
Apply log rule: aloga​(b)=beln(−4+17​)=−4+17​=−4+17​​
e−21​ln(−4+17​)=−4+17​​1​
e−21​ln(−4+17​)
Apply exponent rule: abc=(ab)c=(eln(−4+17​))−21​
Apply log rule: aloga​(b)=beln(−4+17​)=−4+17​=(−4+17​)−21​
Apply exponent rule: a−b=ab1​=−4+17​​1​
=17​−4​+17​−4​1​2​
Join −4+17​​+−4+17​​1​:−4+17​​17​−3​
−4+17​​+−4+17​​1​
Convert element to fraction: 17​−4​=−4+17​​−4+17​​−4+17​​​=−4+17​​−4+17​​−4+17​​​+−4+17​​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=−4+17​​−4+17​​−4+17​​+1​
−4+17​​−4+17​​+1=17​−3
−4+17​​−4+17​​+1
Apply radical rule: a​a​=a17​−4​17​−4​=−4+17​=(17​−4)+1
Remove parentheses: (−a)=−a=−4+17​+1
Add/Subtract the numbers: −4+1=−3=17​−3
=−4+17​​17​−3​
=−4+17​​17​−3​2​
Apply the fraction rule: cb​a​=ba⋅c​=17​−32−4+17​​​
=(17​−32−4+17​​​)2
Apply exponent rule: (ba​)c=bcac​=(17​−3)2(217​−4​)2​
Apply exponent rule: (a⋅b)n=anbn(217​−4​)2=22(17​−4​)2=(17​−3)222(17​−4​)2​
(−4+17​​)2:−4+17​
Apply radical rule: a​=a21​=((−4+17​)21​)2
Apply exponent rule: (ab)c=abc=(−4+17​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−4+17​
=(17​−3)222(−4+17​)​
(17​−3)2=26−617​
(17​−3)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=17​,b=3
=(17​)2−217​⋅3+32
Simplify (17​)2−217​⋅3+32:26−617​
(17​)2−217​⋅3+32
(17​)2=17
(17​)2
Apply radical rule: a​=a21​=(1721​)2
Apply exponent rule: (ab)c=abc=1721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=17
217​⋅3=617​
217​⋅3
Multiply the numbers: 2⋅3=6=617​
32=9
32
32=9=9
=17−617​+9
Add the numbers: 17+9=26=26−617​
=26−617​
=26−617​22(17​−4)​
Factor 26−617​:2(13−317​)
26−617​
Rewrite as=2⋅13−2⋅317​
Factor out common term 2=2(13−317​)
=2(13−317​)22(−4+17​)​
Cancel the common factor: 2=13−317​2(17​−4)​
=2⋅13−317​2(17​−4)​
Multiply fractions: a⋅cb​=ca⋅b​=13−317​2(17​−4)⋅2​
Multiply the numbers: 2⋅2=4=13−317​4(17​−4)​
e21​ln(−4+17​)+e−21​ln(−4+17​)e21​ln(−4+17​)−e−21​ln(−4+17​)​=17​−317​−5​
e21​ln(−4+17​)+e−21​ln(−4+17​)e21​ln(−4+17​)−e−21​ln(−4+17​)​
e21​ln(−4+17​)=−4+17​​
e21​ln(−4+17​)
Apply exponent rule: abc=(ab)c=eln(−4+17​)​
Apply log rule: aloga​(b)=beln(−4+17​)=−4+17​=−4+17​​
e−21​ln(−4+17​)=−4+17​​1​
e−21​ln(−4+17​)
Apply exponent rule: abc=(ab)c=(eln(−4+17​))−21​
Apply log rule: aloga​(b)=beln(−4+17​)=−4+17​=(−4+17​)−21​
Apply exponent rule: a−b=ab1​=−4+17​​1​
=17​−4​+17​−4​1​e21​ln(17​−4)−e−21​ln(17​−4)​
e21​ln(−4+17​)=−4+17​​
e21​ln(−4+17​)
Apply exponent rule: abc=(ab)c=eln(−4+17​)​
Apply log rule: aloga​(b)=beln(−4+17​)=−4+17​=−4+17​​
e−21​ln(−4+17​)=−4+17​​1​
e−21​ln(−4+17​)
Apply exponent rule: abc=(ab)c=(eln(−4+17​))−21​
Apply log rule: aloga​(b)=beln(−4+17​)=−4+17​=(−4+17​)−21​
Apply exponent rule: a−b=ab1​=−4+17​​1​
=17​−4​+17​−4​1​17​−4​−17​−4​1​​
Join −4+17​​+−4+17​​1​:−4+17​​17​−3​
−4+17​​+−4+17​​1​
Convert element to fraction: 17​−4​=−4+17​​−4+17​​−4+17​​​=−4+17​​−4+17​​−4+17​​​+−4+17​​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=−4+17​​−4+17​​−4+17​​+1​
−4+17​​−4+17​​+1=17​−3
−4+17​​−4+17​​+1
Apply radical rule: a​a​=a17​−4​17​−4​=−4+17​=(17​−4)+1
Remove parentheses: (−a)=−a=−4+17​+1
Add/Subtract the numbers: −4+1=−3=17​−3
=−4+17​​17​−3​
=−4+17​​17​−3​17​−4​−17​−4​1​​
Join −4+17​​−−4+17​​1​:−4+17​​17​−5​
−4+17​​−−4+17​​1​
Convert element to fraction: 17​−4​=−4+17​​−4+17​​−4+17​​​=−4+17​​−4+17​​−4+17​​​−−4+17​​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=−4+17​​−4+17​​−4+17​​−1​
−4+17​​−4+17​​−1=17​−5
−4+17​​−4+17​​−1
Apply radical rule: a​a​=a17​−4​17​−4​=−4+17​=(17​−4)−1
Remove parentheses: (−a)=−a=−4+17​−1
Subtract the numbers: −4−1=−5=17​−5
=−4+17​​17​−5​
=−4+17​​17​−3​−4+17​​17​−5​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=−4+17​​(17​−3)(17​−5)−4+17​​​
Cancel the common factor: −4+17​​=17​−317​−5​
=13−317​4(17​−4)​+17​−317​−5​
Simplify
13−317​4(17​−4)​+17​−317​−5​
Least Common Multiplier of 13−317​,17​−3:(17​−3)(13−317​)
13−317​,17​−3
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 13−317​ or 17​−3=(17​−3)(13−317​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (17​−3)(13−317​)
For 13−317​4(17​−4)​:multiply the denominator and numerator by 17​−313−317​4(17​−4)​=(13−317​)(17​−3)4(17​−4)(17​−3)​
For 17​−317​−5​:multiply the denominator and numerator by 13−317​17​−317​−5​=(17​−3)(13−317​)(17​−5)(13−317​)​
=(13−317​)(17​−3)4(17​−4)(17​−3)​+(17​−3)(13−317​)(17​−5)(13−317​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(17​−3)(13−317​)4(17​−4)(17​−3)+(17​−5)(13−317​)​
Expand (17​−3)(13−317​):2217​−90
(17​−3)(13−317​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=17​,b=−3,c=13,d=−317​=17​⋅13+17​(−317​)+(−3)⋅13+(−3)(−317​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=1317​−317​17​−3⋅13+3⋅317​
Simplify 1317​−317​17​−3⋅13+3⋅317​:2217​−90
1317​−317​17​−3⋅13+3⋅317​
317​17​=51
317​17​
Apply radical rule: a​a​=a17​17​=17=3⋅17
Multiply the numbers: 3⋅17=51=51
3⋅13=39
3⋅13
Multiply the numbers: 3⋅13=39=39
3⋅317​=917​
3⋅317​
Multiply the numbers: 3⋅3=9=917​
=1317​−51−39+917​
Add similar elements: 1317​+917​=2217​=2217​−51−39
Subtract the numbers: −51−39=−90=2217​−90
=2217​−90
=2217​−904(17​−4)(17​−3)+(17​−5)(13−317​)​
Expand 4(17​−4)(17​−3)+(17​−5)(13−317​):0
4(17​−4)(17​−3)+(17​−5)(13−317​)
Expand 4(17​−4)(17​−3):116−2817​
Expand (17​−4)(17​−3):29−717​
(17​−4)(17​−3)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=17​,b=−4,c=17​,d=−3=17​17​+17​(−3)+(−4)17​+(−4)(−3)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=17​17​−317​−417​+4⋅3
Simplify 17​17​−317​−417​+4⋅3:29−717​
17​17​−317​−417​+4⋅3
Add similar elements: −317​−417​=−717​=17​17​−717​+4⋅3
Apply radical rule: a​a​=a17​17​=17=17−717​+4⋅3
Multiply the numbers: 4⋅3=12=17−717​+12
Add the numbers: 17+12=29=29−717​
=29−717​
=4(29−717​)
Expand 4(29−717​):116−2817​
4(29−717​)
Apply the distributive law: a(b−c)=ab−aca=4,b=29,c=717​=4⋅29−4⋅717​
Simplify 4⋅29−4⋅717​:116−2817​
4⋅29−4⋅717​
Multiply the numbers: 4⋅29=116=116−4⋅717​
Multiply the numbers: 4⋅7=28=116−2817​
=116−2817​
=116−2817​
=116−2817​+(17​−5)(13−317​)
Expand (17​−5)(13−317​):2817​−116
(17​−5)(13−317​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=17​,b=−5,c=13,d=−317​=17​⋅13+17​(−317​)+(−5)⋅13+(−5)(−317​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=1317​−317​17​−5⋅13+5⋅317​
Simplify 1317​−317​17​−5⋅13+5⋅317​:2817​−116
1317​−317​17​−5⋅13+5⋅317​
317​17​=51
317​17​
Apply radical rule: a​a​=a17​17​=17=3⋅17
Multiply the numbers: 3⋅17=51=51
5⋅13=65
5⋅13
Multiply the numbers: 5⋅13=65=65
5⋅317​=1517​
5⋅317​
Multiply the numbers: 5⋅3=15=1517​
=1317​−51−65+1517​
Add similar elements: 1317​+1517​=2817​=2817​−51−65
Subtract the numbers: −51−65=−116=2817​−116
=2817​−116
=116−2817​+2817​−116
Simplify 116−2817​+2817​−116:0
116−2817​+2817​−116
Add similar elements: −2817​+2817​=0=116−116
Subtract the numbers: 116−116=0=0
=0
=2217​−900​
Apply rule a0​=0,a=0=0
=0
0=0
True
The solution isx=21​ln(−4+17​)
x=21​ln(−4+17​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

16cos^2(θ)-9=0sin(a)+cos(a)=12sin^2(x)+9sin(x)-5=010cos(2x)=06cos^2(θ)sin(θ)-3cos^2(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sech^2(x)+tanh(x)=0 ?

    The general solution for 2sech^2(x)+tanh(x)=0 is x= 1/2 ln(-4+sqrt(17))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024