Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3csc^2(x)+1.5cot(x)=15

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3csc2(x)+1.5cot(x)=15

Solution

x=0.51534…+πn,x=2.72592…+πn
+1
Degrees
x=29.52683…∘+180∘n,x=156.18376…∘+180∘n
Solution steps
3csc2(x)+1.5cot(x)=15
Subtract 15 from both sides3csc2(x)+1.5cot(x)−15=0
Rewrite using trig identities
−15+1.5cot(x)+3csc2(x)
Use the Pythagorean identity: csc2(x)=1+cot2(x)=−15+1.5cot(x)+3(1+cot2(x))
Simplify −15+1.5cot(x)+3(1+cot2(x)):3cot2(x)+1.5cot(x)−12
−15+1.5cot(x)+3(1+cot2(x))
Expand 3(1+cot2(x)):3+3cot2(x)
3(1+cot2(x))
Apply the distributive law: a(b+c)=ab+aca=3,b=1,c=cot2(x)=3⋅1+3cot2(x)
Multiply the numbers: 3⋅1=3=3+3cot2(x)
=−15+1.5cot(x)+3+3cot2(x)
Simplify −15+1.5cot(x)+3+3cot2(x):3cot2(x)+1.5cot(x)−12
−15+1.5cot(x)+3+3cot2(x)
Group like terms=1.5cot(x)+3cot2(x)−15+3
Add/Subtract the numbers: −15+3=−12=3cot2(x)+1.5cot(x)−12
=3cot2(x)+1.5cot(x)−12
=3cot2(x)+1.5cot(x)−12
−12+1.5cot(x)+3cot2(x)=0
Solve by substitution
−12+1.5cot(x)+3cot2(x)=0
Let: cot(x)=u−12+1.5u+3u2=0
−12+1.5u+3u2=0:u=4−1+65​​,u=−41+65​​
−12+1.5u+3u2=0
Multiply both sides by 10
−12+1.5u+3u2=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 10−12⋅10+1.5u⋅10+3u2⋅10=0⋅10
Refine−120+15u+30u2=0
−120+15u+30u2=0
Write in the standard form ax2+bx+c=030u2+15u−120=0
Solve with the quadratic formula
30u2+15u−120=0
Quadratic Equation Formula:
For a=30,b=15,c=−120u1,2​=2⋅30−15±152−4⋅30(−120)​​
u1,2​=2⋅30−15±152−4⋅30(−120)​​
152−4⋅30(−120)​=1565​
152−4⋅30(−120)​
Apply rule −(−a)=a=152+4⋅30⋅120​
Multiply the numbers: 4⋅30⋅120=14400=152+14400​
152=225=225+14400​
Add the numbers: 225+14400=14625=14625​
Prime factorization of 14625:32⋅53⋅13
14625
14625divides by 314625=4875⋅3=3⋅4875
4875divides by 34875=1625⋅3=3⋅3⋅1625
1625divides by 51625=325⋅5=3⋅3⋅5⋅325
325divides by 5325=65⋅5=3⋅3⋅5⋅5⋅65
65divides by 565=13⋅5=3⋅3⋅5⋅5⋅5⋅13
3,5,13 are all prime numbers, therefore no further factorization is possible=3⋅3⋅5⋅5⋅5⋅13
=32⋅53⋅13
=53⋅32⋅13​
Apply exponent rule: ab+c=ab⋅ac=32⋅52⋅5⋅13​
Apply radical rule: =32​52​5⋅13​
Apply radical rule: 32​=3=352​5⋅13​
Apply radical rule: 52​=5=3⋅55⋅13​
Refine=1565​
u1,2​=2⋅30−15±1565​​
Separate the solutionsu1​=2⋅30−15+1565​​,u2​=2⋅30−15−1565​​
u=2⋅30−15+1565​​:4−1+65​​
2⋅30−15+1565​​
Multiply the numbers: 2⋅30=60=60−15+1565​​
Factor −15+1565​:15(−1+65​)
−15+1565​
Rewrite as=−15⋅1+1565​
Factor out common term 15=15(−1+65​)
=6015(−1+65​)​
Cancel the common factor: 15=4−1+65​​
u=2⋅30−15−1565​​:−41+65​​
2⋅30−15−1565​​
Multiply the numbers: 2⋅30=60=60−15−1565​​
Factor −15−1565​:−15(1+65​)
−15−1565​
Rewrite as=−15⋅1−1565​
Factor out common term 15=−15(1+65​)
=−6015(1+65​)​
Cancel the common factor: 15=−41+65​​
The solutions to the quadratic equation are:u=4−1+65​​,u=−41+65​​
Substitute back u=cot(x)cot(x)=4−1+65​​,cot(x)=−41+65​​
cot(x)=4−1+65​​,cot(x)=−41+65​​
cot(x)=4−1+65​​:x=arccot(4−1+65​​)+πn
cot(x)=4−1+65​​
Apply trig inverse properties
cot(x)=4−1+65​​
General solutions for cot(x)=4−1+65​​cot(x)=a⇒x=arccot(a)+πnx=arccot(4−1+65​​)+πn
x=arccot(4−1+65​​)+πn
cot(x)=−41+65​​:x=arccot(−41+65​​)+πn
cot(x)=−41+65​​
Apply trig inverse properties
cot(x)=−41+65​​
General solutions for cot(x)=−41+65​​cot(x)=−a⇒x=arccot(−a)+πnx=arccot(−41+65​​)+πn
x=arccot(−41+65​​)+πn
Combine all the solutionsx=arccot(4−1+65​​)+πn,x=arccot(−41+65​​)+πn
Show solutions in decimal formx=0.51534…+πn,x=2.72592…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(y)=cos(y)solvefor θ,2cos^2(θ)+9cos(θ)-5=0tan(3x)=-sqrt(3),0<= x<= 2pi5cos(θ)=-3sec^2(x)-sec(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3csc^2(x)+1.5cot(x)=15 ?

    The general solution for 3csc^2(x)+1.5cot(x)=15 is x=0.51534…+pin,x=2.72592…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024