Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)=2+tan(3x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)=2+tan(3x)

Solution

x=4π​+πn,x=1.17809…+πn,x=−0.39269…+πn
+1
Degrees
x=45∘+180∘n,x=67.5∘+180∘n,x=−22.5∘+180∘n
Solution steps
tan(x)=2+tan(3x)
Subtract 2+tan(3x) from both sidestan(x)−2−tan(3x)=0
Rewrite using trig identities
−2−tan(3x)+tan(x)
tan(3x)=1−3tan2(x)3tan(x)−tan3(x)​
tan(3x)
Rewrite using trig identities
tan(3x)
Rewrite as=tan(2x+x)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(2x)tan(x)tan(2x)+tan(x)​
=1−tan(2x)tan(x)tan(2x)+tan(x)​
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​
Simplify 1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​:1−3tan2(x)3tan(x)−tan3(x)​
1−1−tan2(x)2tan(x)​tan(x)1−tan2(x)2tan(x)​+tan(x)​
1−tan2(x)2tan(x)​tan(x)=1−tan2(x)2tan2(x)​
1−tan2(x)2tan(x)​tan(x)
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(x)2tan(x)tan(x)​
2tan(x)tan(x)=2tan2(x)
2tan(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan(x)tan(x)=tan1+1(x)=2tan1+1(x)
Add the numbers: 1+1=2=2tan2(x)
=1−tan2(x)2tan2(x)​
=1−−tan2(x)+12tan2(x)​−tan2(x)+12tan(x)​+tan(x)​
Join 1−tan2(x)2tan(x)​+tan(x):1−tan2(x)3tan(x)−tan3(x)​
1−tan2(x)2tan(x)​+tan(x)
Convert element to fraction: tan(x)=1−tan2(x)tan(x)(1−tan2(x))​=1−tan2(x)2tan(x)​+1−tan2(x)tan(x)(1−tan2(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)2tan(x)+tan(x)(1−tan2(x))​
Expand 2tan(x)+tan(x)(1−tan2(x)):3tan(x)−tan3(x)
2tan(x)+tan(x)(1−tan2(x))
Expand tan(x)(1−tan2(x)):tan(x)−tan3(x)
tan(x)(1−tan2(x))
Apply the distributive law: a(b−c)=ab−aca=tan(x),b=1,c=tan2(x)=tan(x)1−tan(x)tan2(x)
=1tan(x)−tan2(x)tan(x)
Simplify 1⋅tan(x)−tan2(x)tan(x):tan(x)−tan3(x)
1tan(x)−tan2(x)tan(x)
1⋅tan(x)=tan(x)
1tan(x)
Multiply: 1⋅tan(x)=tan(x)=tan(x)
tan2(x)tan(x)=tan3(x)
tan2(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan2(x)tan(x)=tan2+1(x)=tan2+1(x)
Add the numbers: 2+1=3=tan3(x)
=tan(x)−tan3(x)
=tan(x)−tan3(x)
=2tan(x)+tan(x)−tan3(x)
Add similar elements: 2tan(x)+tan(x)=3tan(x)=3tan(x)−tan3(x)
=1−tan2(x)3tan(x)−tan3(x)​
=1−−tan2(x)+12tan2(x)​1−tan2(x)3tan(x)−tan3(x)​​
Apply the fraction rule: acb​​=c⋅ab​=(1−tan2(x))(1−1−tan2(x)2tan2(x)​)3tan(x)−tan3(x)​
Join 1−1−tan2(x)2tan2(x)​:1−tan2(x)1−3tan2(x)​
1−1−tan2(x)2tan2(x)​
Convert element to fraction: 1=1−tan2(x)1(1−tan2(x))​=1−tan2(x)1(1−tan2(x))​−1−tan2(x)2tan2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)1(1−tan2(x))−2tan2(x)​
1⋅(1−tan2(x))−2tan2(x)=1−3tan2(x)
1(1−tan2(x))−2tan2(x)
1⋅(1−tan2(x))=1−tan2(x)
1(1−tan2(x))
Multiply: 1⋅(1−tan2(x))=(1−tan2(x))=1−tan2(x)
Remove parentheses: (a)=a=1−tan2(x)
=1−tan2(x)−2tan2(x)
Add similar elements: −tan2(x)−2tan2(x)=−3tan2(x)=1−3tan2(x)
=1−tan2(x)1−3tan2(x)​
=−tan2(x)+1−3tan2(x)+1​(−tan2(x)+1)3tan(x)−tan3(x)​
Multiply (1−tan2(x))1−tan2(x)1−3tan2(x)​:1−3tan2(x)
(1−tan2(x))1−tan2(x)1−3tan2(x)​
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(x)(1−3tan2(x))(1−tan2(x))​
Cancel the common factor: 1−tan2(x)=1−3tan2(x)
=1−3tan2(x)3tan(x)−tan3(x)​
=1−3tan2(x)3tan(x)−tan3(x)​
=−2−1−3tan2(x)3tan(x)−tan3(x)​+tan(x)
Combine the fractions −−3tan2(x)+13tan(x)−tan3(x)​+tan(x):1−3tan2(x)−2tan(x)−2tan3(x)​
−−3tan2(x)+13tan(x)−tan3(x)​+tan(x)
Convert element to fraction: tan(x)=1−3tan2(x)tan(x)(1−3tan2(x))​=−1−3tan2(x)3tan(x)−tan3(x)​+1−3tan2(x)tan(x)(1−3tan2(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−3tan2(x)−(3tan(x)−tan3(x))+tan(x)(1−3tan2(x))​
Expand −(3tan(x)−tan3(x))+tan(x)(1−3tan2(x)):−2tan(x)−2tan3(x)
−(3tan(x)−tan3(x))+tan(x)(1−3tan2(x))
−(3tan(x)−tan3(x)):−3tan(x)+tan3(x)
−(3tan(x)−tan3(x))
Distribute parentheses=−(3tan(x))−(−tan3(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−3tan(x)+tan3(x)
=−3tan(x)+tan3(x)+tan(x)(1−3tan2(x))
Expand tan(x)(1−3tan2(x)):tan(x)−3tan3(x)
tan(x)(1−3tan2(x))
Apply the distributive law: a(b−c)=ab−aca=tan(x),b=1,c=3tan2(x)=tan(x)⋅1−tan(x)⋅3tan2(x)
=1⋅tan(x)−3tan2(x)tan(x)
Simplify 1⋅tan(x)−3tan2(x)tan(x):tan(x)−3tan3(x)
1⋅tan(x)−3tan2(x)tan(x)
1⋅tan(x)=tan(x)
1⋅tan(x)
Multiply: 1⋅tan(x)=tan(x)=tan(x)
3tan2(x)tan(x)=3tan3(x)
3tan2(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan2(x)tan(x)=tan2+1(x)=3tan2+1(x)
Add the numbers: 2+1=3=3tan3(x)
=tan(x)−3tan3(x)
=tan(x)−3tan3(x)
=−3tan(x)+tan3(x)+tan(x)−3tan3(x)
Simplify −3tan(x)+tan3(x)+tan(x)−3tan3(x):−2tan(x)−2tan3(x)
−3tan(x)+tan3(x)+tan(x)−3tan3(x)
Add similar elements: tan3(x)−3tan3(x)=−2tan3(x)=−3tan(x)−2tan3(x)+tan(x)
Add similar elements: −3tan(x)+tan(x)=−2tan(x)=−2tan(x)−2tan3(x)
=−2tan(x)−2tan3(x)
=1−3tan2(x)−2tan(x)−2tan3(x)​
=1−3tan2(x)−2tan(x)−2tan3(x)​−2
−2+1−3tan2(x)−2tan(x)−2tan3(x)​=0
−2+1−3tan2(x)−2tan(x)−2tan3(x)​=0
Solve by substitution
−2+1−3tan2(x)−2tan(x)−2tan3(x)​=0
Let: tan(x)=u−2+1−3u2−2u−2u3​=0
−2+1−3u2−2u−2u3​=0:u=1,u=1+2​,u=1−2​
−2+1−3u2−2u−2u3​=0
Multiply both sides by 1−3u2
−2+1−3u2−2u−2u3​=0
Multiply both sides by 1−3u2−2(1−3u2)+1−3u2−2u−2u3​(1−3u2)=0⋅(1−3u2)
Simplify
−2(1−3u2)+1−3u2−2u−2u3​(1−3u2)=0⋅(1−3u2)
Simplify 1−3u2−2u−2u3​(1−3u2):−2u−2u3
1−3u2−2u−2u3​(1−3u2)
Multiply fractions: a⋅cb​=ca⋅b​=1−3u2(−2u−2u3)(1−3u2)​
Cancel the common factor: 1−3u2=−−2u−2u3
Simplify 0⋅(1−3u2):0
0⋅(1−3u2)
Apply rule 0⋅a=0=0
−2(1−3u2)−2u−2u3=0
−2(1−3u2)−2u−2u3=0
−2(1−3u2)−2u−2u3=0
Solve −2(1−3u2)−2u−2u3=0:u=1,u=1+2​,u=1−2​
−2(1−3u2)−2u−2u3=0
Factor −2(1−3u2)−2u−2u3:−2(u−1)(u2−2u−1)
−2(1−3u2)−2u−2u3
Factor out common term 2=−2(1−u2⋅3+u+u3)
Factor u3−3u2+u+1:(u−1)(u2−2u−1)
1−u2⋅3+u+u3
Use the rational root theorem
a0​=1,an​=1
The dividers of a0​:1,The dividers of an​:1
Therefore, check the following rational numbers:±11​
11​ is a root of the expression, so factor out u−1
=(u−1)u−1u3−3u2+u+1​
u−1u3−3u2+u+1​=u2−2u−1
u−1u3−3u2+u+1​
Divide u−1u3−3u2+u+1​:u−1u3−3u2+u+1​=u2+u−1−2u2+u+1​
Divide the leading coefficients of the numerator u3−3u2+u+1
and the divisor u−1:uu3​=u2
Quotient=u2
Multiply u−1 by u2:u3−u2Subtract u3−u2 from u3−3u2+u+1 to get new remainderRemainder=−2u2+u+1
Thereforeu−1u3−3u2+u+1​=u2+u−1−2u2+u+1​
=u2+u−1−2u2+u+1​
Divide u−1−2u2+u+1​:u−1−2u2+u+1​=−2u+u−1−u+1​
Divide the leading coefficients of the numerator −2u2+u+1
and the divisor u−1:u−2u2​=−2u
Quotient=−2u
Multiply u−1 by −2u:−2u2+2uSubtract −2u2+2u from −2u2+u+1 to get new remainderRemainder=−u+1
Thereforeu−1−2u2+u+1​=−2u+u−1−u+1​
=u2−2u+u−1−u+1​
Divide u−1−u+1​:u−1−u+1​=−1
Divide the leading coefficients of the numerator −u+1
and the divisor u−1:u−u​=−1
Quotient=−1
Multiply u−1 by −1:−u+1Subtract −u+1 from −u+1 to get new remainderRemainder=0
Thereforeu−1−u+1​=−1
=u2−2u−1
=(u−1)(u2−2u−1)
=−2(u−1)(u2−2u−1)
−2(u−1)(u2−2u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0oru2−2u−1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u2−2u−1=0:u=1+2​,u=1−2​
u2−2u−1=0
Solve with the quadratic formula
u2−2u−1=0
Quadratic Equation Formula:
For a=1,b=−2,c=−1u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−1)​​
u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−1)​​
(−2)2−4⋅1⋅(−1)​=22​
(−2)2−4⋅1⋅(−1)​
Apply rule −(−a)=a=(−2)2+4⋅1⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=22+4​
22=4=4+4​
Add the numbers: 4+4=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
u1,2​=2⋅1−(−2)±22​​
Separate the solutionsu1​=2⋅1−(−2)+22​​,u2​=2⋅1−(−2)−22​​
u=2⋅1−(−2)+22​​:1+2​
2⋅1−(−2)+22​​
Apply rule −(−a)=a=2⋅12+22​​
Multiply the numbers: 2⋅1=2=22+22​​
Factor 2+22​:2(1+2​)
2+22​
Rewrite as=2⋅1+22​
Factor out common term 2=2(1+2​)
=22(1+2​)​
Divide the numbers: 22​=1=1+2​
u=2⋅1−(−2)−22​​:1−2​
2⋅1−(−2)−22​​
Apply rule −(−a)=a=2⋅12−22​​
Multiply the numbers: 2⋅1=2=22−22​​
Factor 2−22​:2(1−2​)
2−22​
Rewrite as=2⋅1−22​
Factor out common term 2=2(1−2​)
=22(1−2​)​
Divide the numbers: 22​=1=1−2​
The solutions to the quadratic equation are:u=1+2​,u=1−2​
The solutions areu=1,u=1+2​,u=1−2​
u=1,u=1+2​,u=1−2​
Verify Solutions
Find undefined (singularity) points:u=3​1​,u=−3​1​
Take the denominator(s) of −2+1−3u2−2u−2u3​ and compare to zero
Solve 1−3u2=0:u=3​1​,u=−3​1​
1−3u2=0
Move 1to the right side
1−3u2=0
Subtract 1 from both sides1−3u2−1=0−1
Simplify−3u2=−1
−3u2=−1
Divide both sides by −3
−3u2=−1
Divide both sides by −3−3−3u2​=−3−1​
Simplifyu2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
31​​=3​1​
31​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=3​1​​
Apply radical rule: 1​=11​=1=3​1​
−31​​=−3​1​
−31​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−3​1​​
Apply radical rule: 1​=11​=1=−3​1​
u=3​1​,u=−3​1​
The following points are undefinedu=3​1​,u=−3​1​
Combine undefined points with solutions:
u=1,u=1+2​,u=1−2​
Substitute back u=tan(x)tan(x)=1,tan(x)=1+2​,tan(x)=1−2​
tan(x)=1,tan(x)=1+2​,tan(x)=1−2​
tan(x)=1:x=4π​+πn
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
tan(x)=1+2​:x=arctan(1+2​)+πn
tan(x)=1+2​
Apply trig inverse properties
tan(x)=1+2​
General solutions for tan(x)=1+2​tan(x)=a⇒x=arctan(a)+πnx=arctan(1+2​)+πn
x=arctan(1+2​)+πn
tan(x)=1−2​:x=arctan(1−2​)+πn
tan(x)=1−2​
Apply trig inverse properties
tan(x)=1−2​
General solutions for tan(x)=1−2​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(1−2​)+πn
x=arctan(1−2​)+πn
Combine all the solutionsx=4π​+πn,x=arctan(1+2​)+πn,x=arctan(1−2​)+πn
Show solutions in decimal formx=4π​+πn,x=1.17809…+πn,x=−0.39269…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(x)-3=0sin^2(x)=2sin^2(x/2)5sin(x)=cos(x)-4-21tan(x)+3sqrt(3)=-3(sqrt(3)+tan(x))tan(y)=-1

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)=2+tan(3x) ?

    The general solution for tan(x)=2+tan(3x) is x= pi/4+pin,x=1.17809…+pin,x=-0.39269…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024