Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

900=400sin((2pit}{365}+\frac{7pi)/8)+500

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

900=400sin(3652πt​+87π​)+500

Solution

t=365n−161095​
+1
Degrees
t=−3921.17991…∘+20912.95952…∘n
Solution steps
900=400sin(3652πt​+87π​)+500
Switch sides400sin(3652πt​+87π​)+500=900
Move 500to the right side
400sin(3652πt​+87π​)+500=900
Subtract 500 from both sides400sin(3652πt​+87π​)+500−500=900−500
Simplify400sin(3652πt​+87π​)=400
400sin(3652πt​+87π​)=400
Divide both sides by 400
400sin(3652πt​+87π​)=400
Divide both sides by 400400400sin(3652πt​+87π​)​=400400​
Simplifysin(3652πt​+87π​)=1
sin(3652πt​+87π​)=1
General solutions for sin(3652πt​+87π​)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3652πt​+87π​=2π​+2πn
3652πt​+87π​=2π​+2πn
Solve 3652πt​+87π​=2π​+2πn:t=365n−161095​
3652πt​+87π​=2π​+2πn
Move 87π​to the right side
3652πt​+87π​=2π​+2πn
Subtract 87π​ from both sides3652πt​+87π​−87π​=2π​+2πn−87π​
Simplify
3652πt​+87π​−87π​=2π​+2πn−87π​
Simplify 3652πt​+87π​−87π​:3652πt​
3652πt​+87π​−87π​
Add similar elements: 87π​−87π​=0
=3652πt​
Simplify 2π​+2πn−87π​:2πn−83π​
2π​+2πn−87π​
Group like terms=2πn+2π​−87π​
Least Common Multiplier of 2,8:8
2,8
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 8:2⋅2⋅2
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 8=2⋅2⋅2
Multiply the numbers: 2⋅2⋅2=8=8
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 8
For 2π​:multiply the denominator and numerator by 42π​=2⋅4π4​=8π4​
=8π4​−87π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=8π4−7π​
Add similar elements: 4π−7π=−3π=8−3π​
Apply the fraction rule: b−a​=−ba​=2πn−83π​
3652πt​=2πn−83π​
3652πt​=2πn−83π​
3652πt​=2πn−83π​
Multiply both sides by 365
3652πt​=2πn−83π​
Multiply both sides by 365365365⋅2πt​=365⋅2πn−365⋅83π​
Simplify
365365⋅2πt​=365⋅2πn−365⋅83π​
Simplify 365365⋅2πt​:2πt
365365⋅2πt​
Multiply the numbers: 365⋅2=730=365730πt​
Divide the numbers: 365730​=2=2πt
Simplify 365⋅2πn−365⋅83π​:730πn−81095π​
365⋅2πn−365⋅83π​
365⋅2πn=730πn
365⋅2πn
Multiply the numbers: 365⋅2=730=730πn
365⋅83π​=81095π​
365⋅83π​
Multiply fractions: a⋅cb​=ca⋅b​=83π365​
Multiply the numbers: 3⋅365=1095=81095π​
=730πn−81095π​
2πt=730πn−81095π​
2πt=730πn−81095π​
2πt=730πn−81095π​
Divide both sides by 2π
2πt=730πn−81095π​
Divide both sides by 2π2π2πt​=2π730πn​−2π81095π​​
Simplify
2π2πt​=2π730πn​−2π81095π​​
Simplify 2π2πt​:t
2π2πt​
Divide the numbers: 22​=1=ππt​
Cancel the common factor: π=t
Simplify 2π730πn​−2π81095π​​:365n−161095​
2π730πn​−2π81095π​​
2π730πn​=365n
2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Divide the numbers: 2730​=365=π365πn​
Cancel the common factor: π=365n
=365n
2π81095π​​=161095​
2π81095π​​
Apply the fraction rule: acb​​=c⋅ab​=8⋅2π1095π​
Multiply the numbers: 8⋅2=16=16π1095π​
Cancel the common factor: π=161095​
=365n−161095​
t=365n−161095​
t=365n−161095​
t=365n−161095​
t=365n−161095​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)+2sin(x)=02sin^2(x)=sin(x)+1,0<= x<= 2pi15tan(θ)-7=5tan(θ)-3sin^2(x)-9cos(x)+9=0,0<= x<= 2pi-10cos(2x)-32cos(x)-22=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 900=400sin((2pit}{365}+\frac{7pi)/8)+500 ?

    The general solution for 900=400sin((2pit}{365}+\frac{7pi)/8)+500 is t=365n-1095/16
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024