Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(3x)+arcsin(x)=60

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(3x)+arcsin(x)=60∘

Solution

x=213​3​​
Solution steps
arcsin(3x)+arcsin(x)=60∘
Rewrite using trig identities
arcsin(3x)+arcsin(x)
Use the Sum to Product identity: arcsin(s)+arcsin(t)=arcsin(s1−t2​+t1−s2​)=arcsin(3x1−x2​+x1−(3x)2​)
arcsin(3x1−x2​+x1−(3x)2​)=60∘
Apply trig inverse properties
arcsin(3x1−x2​+x1−(3x)2​)=60∘
arcsin(x)=a⇒x=sin(a)3x1−x2​+x1−(3x)2​=sin(60∘)
sin(60∘)=23​​
sin(60∘)
Use the following trivial identity:sin(60∘)=23​​
sin(60∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​
3x1−x2​+x1−(3x)2​=23​​
3x1−x2​+x1−(3x)2​=23​​
Solve 3x1−x2​+x1−(3x)2​=23​​:x=213​3​​
3x1−x2​+x1−(3x)2​=23​​
Multiply both sides by 23x1−x2​⋅2+x1−(3x)2​⋅2=23​​⋅2
Simplify61−x2​x+21−(3x)2​x=3​
Remove square roots
61−x2​x+21−(3x)2​x=3​
Subtract 21−(3x)2​x from both sides61−x2​x+21−(3x)2​x−21−(3x)2​x=3​−21−(3x)2​x
Simplify61−x2​x=3​−21−(3x)2​x
Square both sides:36x2−36x4=3−43​x1−9x2​+4x2−36x4
61−x2​x+21−(3x)2​x=3​
(61−x2​x)2=(3​−21−(3x)2​x)2
Expand (61−x2​x)2:36x2−36x4
(61−x2​x)2
Apply exponent rule: (a⋅b)n=anbn=62x2(1−x2​)2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=62(1−x2)x2
62=36=36(1−x2)x2
Expand 36(1−x2)x2:36x2−36x4
36(1−x2)x2
=36x2(1−x2)
Apply the distributive law: a(b−c)=ab−aca=36x2,b=1,c=x2=36x2⋅1−36x2x2
=36⋅1⋅x2−36x2x2
Simplify 36⋅1⋅x2−36x2x2:36x2−36x4
36⋅1⋅x2−36x2x2
36⋅1⋅x2=36x2
36⋅1⋅x2
Multiply the numbers: 36⋅1=36=36x2
36x2x2=36x4
36x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=36x2+2
Add the numbers: 2+2=4=36x4
=36x2−36x4
=36x2−36x4
=36x2−36x4
Expand (3​−21−(3x)2​x)2:3−43​x1−9x2​+4x2−36x4
(3​−21−(3x)2​x)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=3​,b=21−(3x)2​x
=(3​)2−23​⋅21−(3x)2​x+(21−(3x)2​x)2
Simplify (3​)2−23​⋅21−(3x)2​x+(21−(3x)2​x)2:3−43​1−(3x)2​x+41−(3x)2x2
(3​)2−23​⋅21−(3x)2​x+(21−(3x)2​x)2
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅21−(3x)2​x=43​1−(3x)2​x
23​⋅21−(3x)2​x
Multiply the numbers: 2⋅2=4=43​1−(3x)2​x
(21−(3x)2​x)2=41−(3x)2x2
(21−(3x)2​x)2
Apply exponent rule: (a⋅b)n=anbn=22x2(1−(3x)2​)2
(1−(3x)2​)2:1−(3x)2
Apply radical rule: a​=a21​=((1−(3x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(3x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(3x)2
=22(1−(3x)2)x2
22=4=4(1−(3x)2)x2
=3−43​1−(3x)2​x+4(1−(3x)2)x2
=3−43​1−(3x)2​x+4(1−(3x)2)x2
Expand 3−43​1−(3x)2​x+4(1−(3x)2)x2:3−43​x1−9x2​+4x2−36x4
3−43​1−(3x)2​x+4(1−(3x)2)x2
1−(3x)2​=1−9x2​
1−(3x)2​
(3x)2=9x2
(3x)2
Apply exponent rule: (a⋅b)n=anbn=32x2
32=9=9x2
=1−9x2​
=3−43​x−9x2+1​+4x2(−(3x)2+1)
(3x)2=9x2
(3x)2
Apply exponent rule: (a⋅b)n=anbn=32x2
32=9=9x2
=3−43​x−9x2+1​+4x2(−9x2+1)
=3−43​x1−9x2​+4x2(1−9x2)
Expand 4x2(1−9x2):4x2−36x4
4x2(1−9x2)
Apply the distributive law: a(b−c)=ab−aca=4x2,b=1,c=9x2=4x2⋅1−4x2⋅9x2
=4⋅1⋅x2−4⋅9x2x2
Simplify 4⋅1⋅x2−4⋅9x2x2:4x2−36x4
4⋅1⋅x2−4⋅9x2x2
4⋅1⋅x2=4x2
4⋅1⋅x2
Multiply the numbers: 4⋅1=4=4x2
4⋅9x2x2=36x4
4⋅9x2x2
Multiply the numbers: 4⋅9=36=36x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=36x2+2
Add the numbers: 2+2=4=36x4
=4x2−36x4
=4x2−36x4
=3−43​1−9x2​x+4x2−36x4
=3−43​x1−9x2​+4x2−36x4
=3−43​x1−9x2​+4x2−36x4
36x2−36x4=3−43​x1−9x2​+4x2−36x4
36x2−36x4=3−43​x1−9x2​+4x2−36x4
Subtract 4x2−36x4 from both sides36x2−36x4−(4x2−36x4)=3−43​x1−9x2​+4x2−36x4−(4x2−36x4)
Simplify32x2=−43​1−9x2​x+3
Subtract 3 from both sides32x2−3=−43​1−9x2​x+3−3
Simplify32x2−3=−43​1−9x2​x
Square both sides:1024x4−192x2+9=48x2−432x4
36x2−36x4=3−43​x1−9x2​+4x2−36x4
(32x2−3)2=(−43​1−9x2​x)2
Expand (32x2−3)2:1024x4−192x2+9
(32x2−3)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=32x2,b=3
=(32x2)2−2⋅32x2⋅3+32
Simplify (32x2)2−2⋅32x2⋅3+32:1024x4−192x2+9
(32x2)2−2⋅32x2⋅3+32
(32x2)2=1024x4
(32x2)2
Apply exponent rule: (a⋅b)n=anbn=322(x2)2
(x2)2:x4
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=322x4
322=1024=1024x4
2⋅32x2⋅3=192x2
2⋅32x2⋅3
Multiply the numbers: 2⋅32⋅3=192=192x2
32=9
32
32=9=9
=1024x4−192x2+9
=1024x4−192x2+9
Expand (−43​1−9x2​x)2:48x2−432x4
(−43​1−9x2​x)2
Apply exponent rule: (−a)n=an,if n is even(−43​1−9x2​x)2=(43​1−9x2​x)2=(43​1−9x2​x)2
Apply exponent rule: (a⋅b)n=anbn=42(3​)2x2(1−9x2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42⋅3(1−9x2​)2x2
(1−9x2​)2:1−9x2
Apply radical rule: a​=a21​=((1−9x2)21​)2
Apply exponent rule: (ab)c=abc=(1−9x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−9x2
=42⋅3(1−9x2)x2
Refine=48(1−9x2)x2
Expand 48(1−9x2)x2:48x2−432x4
48(1−9x2)x2
=48x2(1−9x2)
Apply the distributive law: a(b−c)=ab−aca=48x2,b=1,c=9x2=48x2⋅1−48x2⋅9x2
=48⋅1⋅x2−48⋅9x2x2
Simplify 48⋅1⋅x2−48⋅9x2x2:48x2−432x4
48⋅1⋅x2−48⋅9x2x2
48⋅1⋅x2=48x2
48⋅1⋅x2
Multiply the numbers: 48⋅1=48=48x2
48⋅9x2x2=432x4
48⋅9x2x2
Multiply the numbers: 48⋅9=432=432x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=432x2+2
Add the numbers: 2+2=4=432x4
=48x2−432x4
=48x2−432x4
=48x2−432x4
1024x4−192x2+9=48x2−432x4
1024x4−192x2+9=48x2−432x4
1024x4−192x2+9=48x2−432x4
Solve 1024x4−192x2+9=48x2−432x4:x=27​3​​,x=−27​3​​,x=213​3​​,x=−213​3​​
1024x4−192x2+9=48x2−432x4
Move 432x4to the left side
1024x4−192x2+9=48x2−432x4
Add 432x4 to both sides1024x4−192x2+9+432x4=48x2−432x4+432x4
Simplify1456x4−192x2+9=48x2
1456x4−192x2+9=48x2
Move 48x2to the left side
1456x4−192x2+9=48x2
Subtract 48x2 from both sides1456x4−192x2+9−48x2=48x2−48x2
Simplify1456x4−240x2+9=0
1456x4−240x2+9=0
Divide both sides by 145614561456x4​−1456240x2​+14569​=14560​
Write in the standard form an​xn+…+a1​x+a0​=0x4−9115x2​+14569​=0
Rewrite the equation with u=x2 and u2=x4u2−9115u​+14569​=0
Solve u2−9115u​+14569​=0:u=283​,u=523​
u2−9115u​+14569​=0
Find Least Common Multiplier of 91,1456:1456
91,1456
Least Common Multiplier (LCM)
Prime factorization of 91:7⋅13
91
91divides by 791=13⋅7=7⋅13
7,13 are all prime numbers, therefore no further factorization is possible=7⋅13
Prime factorization of 1456:2⋅2⋅2⋅2⋅7⋅13
1456
1456divides by 21456=728⋅2=2⋅728
728divides by 2728=364⋅2=2⋅2⋅364
364divides by 2364=182⋅2=2⋅2⋅2⋅182
182divides by 2182=91⋅2=2⋅2⋅2⋅2⋅91
91divides by 791=13⋅7=2⋅2⋅2⋅2⋅7⋅13
2,7,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅7⋅13
Multiply each factor the greatest number of times it occurs in either 91 or 1456=7⋅13⋅2⋅2⋅2⋅2
Multiply the numbers: 7⋅13⋅2⋅2⋅2⋅2=1456=1456
Multiply by LCM=1456u2⋅1456−9115u​⋅1456+14569​⋅1456=0⋅1456
Simplify1456u2−240u+9=0
Divide both sides by 145614561456u2​−1456240u​+14569​=14560​
Write in the standard form ax2+bx+c=0u2−9115u​+14569​=0
Solve with the quadratic formula
u2−9115u​+14569​=0
Quadratic Equation Formula:
For a=1,b=−9115​,c=14569​u1,2​=2⋅1−(−9115​)±(−9115​)2−4⋅1⋅14569​​​
u1,2​=2⋅1−(−9115​)±(−9115​)2−4⋅1⋅14569​​​
(−9115​)2−4⋅1⋅14569​​=1829​
(−9115​)2−4⋅1⋅14569​​
(−9115​)2=912152​
(−9115​)2
Apply exponent rule: (−a)n=an,if n is even(−9115​)2=(9115​)2=(9115​)2
Apply exponent rule: (ba​)c=bcac​=912152​
4⋅1⋅14569​=3649​
4⋅1⋅14569​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅14569⋅4​
14569⋅4​=3649​
14569⋅4​
Multiply the numbers: 9⋅4=36=145636​
Cancel the common factor: 4=3649​
=1⋅3649​
Multiply: 1⋅3649​=3649​=3649​
=912152​−3649​​
912152​=8281225​
912152​
152=225=912225​
912=8281=8281225​
=8281225​−3649​​
Join 8281225​−3649​:3312481​
8281225​−3649​
Least Common Multiplier of 8281,364:33124
8281,364
Least Common Multiplier (LCM)
Prime factorization of 8281:7⋅7⋅13⋅13
8281
8281divides by 78281=1183⋅7=7⋅1183
1183divides by 71183=169⋅7=7⋅7⋅169
169divides by 13169=13⋅13=7⋅7⋅13⋅13
7,13 are all prime numbers, therefore no further factorization is possible=7⋅7⋅13⋅13
Prime factorization of 364:2⋅2⋅7⋅13
364
364divides by 2364=182⋅2=2⋅182
182divides by 2182=91⋅2=2⋅2⋅91
91divides by 791=13⋅7=2⋅2⋅7⋅13
2,7,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7⋅13
Multiply each factor the greatest number of times it occurs in either 8281 or 364=7⋅7⋅13⋅13⋅2⋅2
Multiply the numbers: 7⋅7⋅13⋅13⋅2⋅2=33124=33124
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 33124
For 8281225​:multiply the denominator and numerator by 48281225​=8281⋅4225⋅4​=33124900​
For 3649​:multiply the denominator and numerator by 913649​=364⋅919⋅91​=33124819​
=33124900​−33124819​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33124900−819​
Subtract the numbers: 900−819=81=3312481​
=3312481​​
Apply radical rule: assuming a≥0,b≥0=33124​81​​
33124​=182
33124​
Factor the number: 33124=1822=1822​
Apply radical rule: 1822​=182=182
=18281​​
81​=9
81​
Factor the number: 81=92=92​
Apply radical rule: 92​=9=9
=1829​
u1,2​=2⋅1−(−9115​)±1829​​
Separate the solutionsu1​=2⋅1−(−9115​)+1829​​,u2​=2⋅1−(−9115​)−1829​​
u=2⋅1−(−9115​)+1829​​:283​
2⋅1−(−9115​)+1829​​
Apply rule −(−a)=a=2⋅19115​+1829​​
Multiply the numbers: 2⋅1=2=29115​+1829​​
Join 9115​+1829​:143​
9115​+1829​
Least Common Multiplier of 91,182:182
91,182
Least Common Multiplier (LCM)
Prime factorization of 91:7⋅13
91
91divides by 791=13⋅7=7⋅13
7,13 are all prime numbers, therefore no further factorization is possible=7⋅13
Prime factorization of 182:2⋅7⋅13
182
182divides by 2182=91⋅2=2⋅91
91divides by 791=13⋅7=2⋅7⋅13
2,7,13 are all prime numbers, therefore no further factorization is possible=2⋅7⋅13
Multiply each factor the greatest number of times it occurs in either 91 or 182=7⋅13⋅2
Multiply the numbers: 7⋅13⋅2=182=182
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 182
For 9115​:multiply the denominator and numerator by 29115​=91⋅215⋅2​=18230​
=18230​+1829​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18230+9​
Add the numbers: 30+9=39=18239​
Cancel the common factor: 13=143​
=2143​​
Apply the fraction rule: acb​​=c⋅ab​=14⋅23​
Multiply the numbers: 14⋅2=28=283​
u=2⋅1−(−9115​)−1829​​:523​
2⋅1−(−9115​)−1829​​
Apply rule −(−a)=a=2⋅19115​−1829​​
Multiply the numbers: 2⋅1=2=29115​−1829​​
Join 9115​−1829​:263​
9115​−1829​
Least Common Multiplier of 91,182:182
91,182
Least Common Multiplier (LCM)
Prime factorization of 91:7⋅13
91
91divides by 791=13⋅7=7⋅13
7,13 are all prime numbers, therefore no further factorization is possible=7⋅13
Prime factorization of 182:2⋅7⋅13
182
182divides by 2182=91⋅2=2⋅91
91divides by 791=13⋅7=2⋅7⋅13
2,7,13 are all prime numbers, therefore no further factorization is possible=2⋅7⋅13
Multiply each factor the greatest number of times it occurs in either 91 or 182=7⋅13⋅2
Multiply the numbers: 7⋅13⋅2=182=182
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 182
For 9115​:multiply the denominator and numerator by 29115​=91⋅215⋅2​=18230​
=18230​−1829​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18230−9​
Subtract the numbers: 30−9=21=18221​
Cancel the common factor: 7=263​
=2263​​
Apply the fraction rule: acb​​=c⋅ab​=26⋅23​
Multiply the numbers: 26⋅2=52=523​
The solutions to the quadratic equation are:u=283​,u=523​
u=283​,u=523​
Substitute back u=x2,solve for x
Solve x2=283​:x=27​3​​,x=−27​3​​
x2=283​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=283​​,x=−283​​
283​​=27​3​​
283​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=28​3​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅7​=22​7​=22​7​
Apply radical rule: a2​=a,a≥022​=2=27​
=27​3​​
−283​​=−27​3​​
−283​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−28​3​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅7​=22​7​=22​7​
Apply radical rule: a2​=a,a≥022​=2=27​
=−27​3​​
x=27​3​​,x=−27​3​​
Solve x2=523​:x=213​3​​,x=−213​3​​
x2=523​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=523​​,x=−523​​
523​​=213​3​​
523​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=52​3​​
52​=213​
52​
Prime factorization of 52:22⋅13
52
52divides by 252=26⋅2=2⋅26
26divides by 226=13⋅2=2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅13
=22⋅13
=22⋅13​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅13​=22​13​=22​13​
Apply radical rule: a2​=a,a≥022​=2=213​
=213​3​​
−523​​=−213​3​​
−523​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−52​3​​
52​=213​
52​
Prime factorization of 52:22⋅13
52
52divides by 252=26⋅2=2⋅26
26divides by 226=13⋅2=2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅13
=22⋅13
=22⋅13​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅13​=22​13​=22​13​
Apply radical rule: a2​=a,a≥022​=2=213​
=−213​3​​
x=213​3​​,x=−213​3​​
The solutions are
x=27​3​​,x=−27​3​​,x=213​3​​,x=−213​3​​
x=27​3​​,x=−27​3​​,x=213​3​​,x=−213​3​​
Verify Solutions:x=27​3​​False,x=−27​3​​False,x=213​3​​True,x=−213​3​​False
Check the solutions by plugging them into 3x1−x2​+x1−(3x)2​=23​​
Remove the ones that don't agree with the equation.
Plug in x=27​3​​:False
3(27​3​​)1−(27​3​​)2​+(27​3​​)1−(3(27​3​​))2​=23​​
3(27​3​​)1−(27​3​​)2​+(27​3​​)1−(3(27​3​​))2​=743​​
3(27​3​​)1−(27​3​​)2​+(27​3​​)1−(3(27​3​​))2​
Remove parentheses: (a)=a=3⋅27​3​​1−(27​3​​)2​+27​3​​1−(3⋅27​3​​)2​
3⋅27​3​​1−(27​3​​)2​=28153​​
3⋅27​3​​1−(27​3​​)2​
1−(27​3​​)2​=27​5​
1−(27​3​​)2​
(27​3​​)2=283​
(27​3​​)2
Apply exponent rule: (ba​)c=bcac​=(27​)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(27​)2=22(7​)2=22(7​)2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22(7​)23​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅73​
22⋅7=28
22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=283​
=1−283​​
Join 1−283​:2825​
1−283​
Convert element to fraction: 1=281⋅28​=281⋅28​−283​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=281⋅28−3​
1⋅28−3=25
1⋅28−3
Multiply the numbers: 1⋅28=28=28−3
Subtract the numbers: 28−3=25=25
=2825​
=2825​​
Apply radical rule: assuming a≥0,b≥0=28​25​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: =7​22​
Apply radical rule: 22​=2=27​
=27​25​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=27​5​
=3⋅27​5​⋅27​3​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=27​⋅27​3​⋅5⋅3​
Multiply the numbers: 5⋅3=15=2⋅27​7​153​​
27​⋅27​=28
27​⋅27​
Multiply the numbers: 2⋅2=4=47​7​
Apply radical rule: a​a​=a7​7​=7=4⋅7
Multiply the numbers: 4⋅7=28=28
=28153​​
27​3​​1−(3⋅27​3​​)2​=283​​
27​3​​1−(3⋅27​3​​)2​
1−(3⋅27​3​​)2​=27​1​
1−(3⋅27​3​​)2​
(3⋅27​3​​)2=2827​
(3⋅27​3​​)2
Multiply 3⋅27​3​​:27​33​​
3⋅27​3​​
Multiply fractions: a⋅cb​=ca⋅b​=27​3​⋅3​
=(27​3​⋅3​)2
Apply exponent rule: (ba​)c=bcac​=(27​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(27​)2=22(7​)2=22(7​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(33​)2=32(3​)2=22(7​)232(3​)2​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅7(3​)2⋅32​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅73⋅32​
3⋅32=33
3⋅32
Apply exponent rule: ab⋅ac=ab+c3⋅32=31+2=31+2
Add the numbers: 1+2=3=33
=22⋅733​
33=27=22⋅727​
22⋅7=28
22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=2827​
=1−2827​​
Join 1−2827​:281​
1−2827​
Convert element to fraction: 1=281⋅28​=281⋅28​−2827​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=281⋅28−27​
1⋅28−27=1
1⋅28−27
Multiply the numbers: 1⋅28=28=28−27
Subtract the numbers: 28−27=1=1
=281​
=281​​
Apply radical rule: assuming a≥0,b≥0=28​1​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: =7​22​
Apply radical rule: 22​=2=27​
=27​1​​
Apply rule 1​=1=27​1​
=27​1​⋅27​3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=27​⋅27​3​⋅1​
Multiply: 3​⋅1=3​=2⋅27​7​3​​
27​⋅27​=28
27​⋅27​
Multiply the numbers: 2⋅2=4=47​7​
Apply radical rule: a​a​=a7​7​=7=4⋅7
Multiply the numbers: 4⋅7=28=28
=283​​
=28153​​+283​​
Apply rule ca​±cb​=ca±b​=28153​+3​​
Add similar elements: 153​+3​=163​=28163​​
Cancel the common factor: 4=743​​
743​​=23​​
False
Plug in x=−27​3​​:False
3(−27​3​​)1−(−27​3​​)2​+(−27​3​​)1−(3(−27​3​​))2​=23​​
3(−27​3​​)1−(−27​3​​)2​+(−27​3​​)1−(3(−27​3​​))2​=−743​​
3(−27​3​​)1−(−27​3​​)2​+(−27​3​​)1−(3(−27​3​​))2​
Remove parentheses: (−a)=−a=−3⋅27​3​​1−(−27​3​​)2​−27​3​​1−(−3⋅27​3​​)2​
3⋅27​3​​1−(−27​3​​)2​=28153​​
3⋅27​3​​1−(−27​3​​)2​
1−(−27​3​​)2​=27​5​
1−(−27​3​​)2​
(−27​3​​)2=283​
(−27​3​​)2
Apply exponent rule: (−a)n=an,if n is even(−27​3​​)2=(27​3​​)2=(27​3​​)2
Apply exponent rule: (ba​)c=bcac​=(27​)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(27​)2=22(7​)2=22(7​)2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22(7​)23​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅73​
22⋅7=28
22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=283​
=1−283​​
Join 1−283​:2825​
1−283​
Convert element to fraction: 1=281⋅28​=281⋅28​−283​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=281⋅28−3​
1⋅28−3=25
1⋅28−3
Multiply the numbers: 1⋅28=28=28−3
Subtract the numbers: 28−3=25=25
=2825​
=2825​​
Apply radical rule: assuming a≥0,b≥0=28​25​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: =7​22​
Apply radical rule: 22​=2=27​
=27​25​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=27​5​
=3⋅27​5​⋅27​3​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=27​⋅27​3​⋅5⋅3​
Multiply the numbers: 5⋅3=15=2⋅27​7​153​​
27​⋅27​=28
27​⋅27​
Multiply the numbers: 2⋅2=4=47​7​
Apply radical rule: a​a​=a7​7​=7=4⋅7
Multiply the numbers: 4⋅7=28=28
=28153​​
27​3​​1−(−3⋅27​3​​)2​=283​​
27​3​​1−(−3⋅27​3​​)2​
1−(−3⋅27​3​​)2​=27​1​
1−(−3⋅27​3​​)2​
(−3⋅27​3​​)2=2827​
(−3⋅27​3​​)2
Multiply −3⋅27​3​​:−27​33​​
−3⋅27​3​​
Multiply fractions: a⋅cb​=ca⋅b​=−27​3​⋅3​
=(−27​33​​)2
Apply exponent rule: (−a)n=an,if n is even(−27​33​​)2=(27​3​⋅3​)2=(27​3​⋅3​)2
Apply exponent rule: (ba​)c=bcac​=(27​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(27​)2=22(7​)2=22(7​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(33​)2=32(3​)2=22(7​)232(3​)2​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅7(3​)2⋅32​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅73⋅32​
3⋅32=33
3⋅32
Apply exponent rule: ab⋅ac=ab+c3⋅32=31+2=31+2
Add the numbers: 1+2=3=33
=22⋅733​
33=27=22⋅727​
22⋅7=28
22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=2827​
=1−2827​​
Join 1−2827​:281​
1−2827​
Convert element to fraction: 1=281⋅28​=281⋅28​−2827​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=281⋅28−27​
1⋅28−27=1
1⋅28−27
Multiply the numbers: 1⋅28=28=28−27
Subtract the numbers: 28−27=1=1
=281​
=281​​
Apply radical rule: assuming a≥0,b≥0=28​1​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: =7​22​
Apply radical rule: 22​=2=27​
=27​1​​
Apply rule 1​=1=27​1​
=27​1​⋅27​3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=27​⋅27​3​⋅1​
Multiply: 3​⋅1=3​=2⋅27​7​3​​
27​⋅27​=28
27​⋅27​
Multiply the numbers: 2⋅2=4=47​7​
Apply radical rule: a​a​=a7​7​=7=4⋅7
Multiply the numbers: 4⋅7=28=28
=283​​
=−28153​​−283​​
Apply rule ca​±cb​=ca±b​=28−153​−3​​
Add similar elements: −153​−3​=−163​=28−163​​
Apply the fraction rule: b−a​=−ba​=−28163​​
Cancel the common factor: 4=−743​​
−743​​=23​​
False
Plug in x=213​3​​:True
3(213​3​​)1−(213​3​​)2​+(213​3​​)1−(3(213​3​​))2​=23​​
3(213​3​​)1−(213​3​​)2​+(213​3​​)1−(3(213​3​​))2​=23​​
3(213​3​​)1−(213​3​​)2​+(213​3​​)1−(3(213​3​​))2​
Remove parentheses: (a)=a=3⋅213​3​​1−(213​3​​)2​+213​3​​1−(3⋅213​3​​)2​
3⋅213​3​​1−(213​3​​)2​=52213​​
3⋅213​3​​1−(213​3​​)2​
1−(213​3​​)2​=213​7​
1−(213​3​​)2​
(213​3​​)2=523​
(213​3​​)2
Apply exponent rule: (ba​)c=bcac​=(213​)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(213​)2=22(13​)2=22(13​)2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22(13​)23​
(13​)2:13
Apply radical rule: a​=a21​=(1321​)2
Apply exponent rule: (ab)c=abc=1321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=13
=22⋅133​
22⋅13=52
22⋅13
22=4=4⋅13
Multiply the numbers: 4⋅13=52=52
=523​
=1−523​​
Join 1−523​:5249​
1−523​
Convert element to fraction: 1=521⋅52​=521⋅52​−523​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=521⋅52−3​
1⋅52−3=49
1⋅52−3
Multiply the numbers: 1⋅52=52=52−3
Subtract the numbers: 52−3=49=49
=5249​
=5249​​
Apply radical rule: assuming a≥0,b≥0=52​49​​
52​=213​
52​
Prime factorization of 52:22⋅13
52
52divides by 252=26⋅2=2⋅26
26divides by 226=13⋅2=2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅13
=22⋅13
=22⋅13​
Apply radical rule: =13​22​
Apply radical rule: 22​=2=213​
=213​49​​
49​=7
49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
=213​7​
=3⋅213​7​⋅213​3​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=213​⋅213​3​⋅7⋅3​
Multiply the numbers: 7⋅3=21=2⋅213​13​213​​
213​⋅213​=52
213​⋅213​
Multiply the numbers: 2⋅2=4=413​13​
Apply radical rule: a​a​=a13​13​=13=4⋅13
Multiply the numbers: 4⋅13=52=52
=52213​​
213​3​​1−(3⋅213​3​​)2​=5253​​
213​3​​1−(3⋅213​3​​)2​
1−(3⋅213​3​​)2​=213​5​
1−(3⋅213​3​​)2​
(3⋅213​3​​)2=5227​
(3⋅213​3​​)2
Multiply 3⋅213​3​​:213​33​​
3⋅213​3​​
Multiply fractions: a⋅cb​=ca⋅b​=213​3​⋅3​
=(213​3​⋅3​)2
Apply exponent rule: (ba​)c=bcac​=(213​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(213​)2=22(13​)2=22(13​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(33​)2=32(3​)2=22(13​)232(3​)2​
(13​)2:13
Apply radical rule: a​=a21​=(1321​)2
Apply exponent rule: (ab)c=abc=1321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=13
=22⋅13(3​)2⋅32​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅133⋅32​
3⋅32=33
3⋅32
Apply exponent rule: ab⋅ac=ab+c3⋅32=31+2=31+2
Add the numbers: 1+2=3=33
=22⋅1333​
33=27=22⋅1327​
22⋅13=52
22⋅13
22=4=4⋅13
Multiply the numbers: 4⋅13=52=52
=5227​
=1−5227​​
Join 1−5227​:5225​
1−5227​
Convert element to fraction: 1=521⋅52​=521⋅52​−5227​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=521⋅52−27​
1⋅52−27=25
1⋅52−27
Multiply the numbers: 1⋅52=52=52−27
Subtract the numbers: 52−27=25=25
=5225​
=5225​​
Apply radical rule: assuming a≥0,b≥0=52​25​​
52​=213​
52​
Prime factorization of 52:22⋅13
52
52divides by 252=26⋅2=2⋅26
26divides by 226=13⋅2=2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅13
=22⋅13
=22⋅13​
Apply radical rule: =13​22​
Apply radical rule: 22​=2=213​
=213​25​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=213​5​
=213​5​⋅213​3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=213​⋅213​3​⋅5​
213​⋅213​=52
213​⋅213​
Multiply the numbers: 2⋅2=4=413​13​
Apply radical rule: a​a​=a13​13​=13=4⋅13
Multiply the numbers: 4⋅13=52=52
=5253​​
=52213​​+5253​​
Apply rule ca​±cb​=ca±b​=52213​+53​​
Add similar elements: 213​+53​=263​=52263​​
Cancel the common factor: 26=23​​
23​​=23​​
True
Plug in x=−213​3​​:False
3(−213​3​​)1−(−213​3​​)2​+(−213​3​​)1−(3(−213​3​​))2​=23​​
3(−213​3​​)1−(−213​3​​)2​+(−213​3​​)1−(3(−213​3​​))2​=−23​​
3(−213​3​​)1−(−213​3​​)2​+(−213​3​​)1−(3(−213​3​​))2​
Remove parentheses: (−a)=−a=−3⋅213​3​​1−(−213​3​​)2​−213​3​​1−(−3⋅213​3​​)2​
3⋅213​3​​1−(−213​3​​)2​=52213​​
3⋅213​3​​1−(−213​3​​)2​
1−(−213​3​​)2​=213​7​
1−(−213​3​​)2​
(−213​3​​)2=523​
(−213​3​​)2
Apply exponent rule: (−a)n=an,if n is even(−213​3​​)2=(213​3​​)2=(213​3​​)2
Apply exponent rule: (ba​)c=bcac​=(213​)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(213​)2=22(13​)2=22(13​)2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22(13​)23​
(13​)2:13
Apply radical rule: a​=a21​=(1321​)2
Apply exponent rule: (ab)c=abc=1321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=13
=22⋅133​
22⋅13=52
22⋅13
22=4=4⋅13
Multiply the numbers: 4⋅13=52=52
=523​
=1−523​​
Join 1−523​:5249​
1−523​
Convert element to fraction: 1=521⋅52​=521⋅52​−523​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=521⋅52−3​
1⋅52−3=49
1⋅52−3
Multiply the numbers: 1⋅52=52=52−3
Subtract the numbers: 52−3=49=49
=5249​
=5249​​
Apply radical rule: assuming a≥0,b≥0=52​49​​
52​=213​
52​
Prime factorization of 52:22⋅13
52
52divides by 252=26⋅2=2⋅26
26divides by 226=13⋅2=2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅13
=22⋅13
=22⋅13​
Apply radical rule: =13​22​
Apply radical rule: 22​=2=213​
=213​49​​
49​=7
49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
=213​7​
=3⋅213​7​⋅213​3​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=213​⋅213​3​⋅7⋅3​
Multiply the numbers: 7⋅3=21=2⋅213​13​213​​
213​⋅213​=52
213​⋅213​
Multiply the numbers: 2⋅2=4=413​13​
Apply radical rule: a​a​=a13​13​=13=4⋅13
Multiply the numbers: 4⋅13=52=52
=52213​​
213​3​​1−(−3⋅213​3​​)2​=5253​​
213​3​​1−(−3⋅213​3​​)2​
1−(−3⋅213​3​​)2​=213​5​
1−(−3⋅213​3​​)2​
(−3⋅213​3​​)2=5227​
(−3⋅213​3​​)2
Multiply −3⋅213​3​​:−213​33​​
−3⋅213​3​​
Multiply fractions: a⋅cb​=ca⋅b​=−213​3​⋅3​
=(−213​33​​)2
Apply exponent rule: (−a)n=an,if n is even(−213​33​​)2=(213​3​⋅3​)2=(213​3​⋅3​)2
Apply exponent rule: (ba​)c=bcac​=(213​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(213​)2=22(13​)2=22(13​)2(33​)2​
Apply exponent rule: (a⋅b)n=anbn(33​)2=32(3​)2=22(13​)232(3​)2​
(13​)2:13
Apply radical rule: a​=a21​=(1321​)2
Apply exponent rule: (ab)c=abc=1321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=13
=22⋅13(3​)2⋅32​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅133⋅32​
3⋅32=33
3⋅32
Apply exponent rule: ab⋅ac=ab+c3⋅32=31+2=31+2
Add the numbers: 1+2=3=33
=22⋅1333​
33=27=22⋅1327​
22⋅13=52
22⋅13
22=4=4⋅13
Multiply the numbers: 4⋅13=52=52
=5227​
=1−5227​​
Join 1−5227​:5225​
1−5227​
Convert element to fraction: 1=521⋅52​=521⋅52​−5227​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=521⋅52−27​
1⋅52−27=25
1⋅52−27
Multiply the numbers: 1⋅52=52=52−27
Subtract the numbers: 52−27=25=25
=5225​
=5225​​
Apply radical rule: assuming a≥0,b≥0=52​25​​
52​=213​
52​
Prime factorization of 52:22⋅13
52
52divides by 252=26⋅2=2⋅26
26divides by 226=13⋅2=2⋅2⋅13
2,13 are all prime numbers, therefore no further factorization is possible=2⋅2⋅13
=22⋅13
=22⋅13​
Apply radical rule: =13​22​
Apply radical rule: 22​=2=213​
=213​25​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=213​5​
=213​5​⋅213​3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=213​⋅213​3​⋅5​
213​⋅213​=52
213​⋅213​
Multiply the numbers: 2⋅2=4=413​13​
Apply radical rule: a​a​=a13​13​=13=4⋅13
Multiply the numbers: 4⋅13=52=52
=5253​​
=−52213​​−5253​​
Apply rule ca​±cb​=ca±b​=52−213​−53​​
Add similar elements: −213​−53​=−263​=52−263​​
Apply the fraction rule: b−a​=−ba​=−52263​​
Cancel the common factor: 26=−23​​
−23​​=23​​
False
The solution isx=213​3​​
x=213​3​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(3x)+arcsin(x)=60∘
Remove the ones that don't agree with the equation.
Check the solution 213​3​​:True
213​3​​
Plug in n=1213​3​​
For arcsin(3x)+arcsin(x)=60∘plug inx=213​3​​arcsin(3⋅213​3​​)+arcsin(213​3​​)=60∘
Refine1.04719…=1.04719…
⇒True
x=213​3​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos^2(2x)-4cos(2x)+1=0cos(θ)= 2/(sqrt(13))4sin(x-pi)+2=01/2 tan(2x)=tan(x)sin(x+pi)+cos(x+pi)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(3x)+arcsin(x)=60 ?

    The general solution for arcsin(3x)+arcsin(x)=60 is x=(sqrt(3))/(2sqrt(13))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024