Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(u)-csc(u)=(sin(u))/(1+cos(u))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(u)−csc(u)=1+cos(u)sin(u)​

Solution

NoSolutionforu∈R
Solution steps
cot(u)−csc(u)=1+cos(u)sin(u)​
Subtract 1+cos(u)sin(u)​ from both sidescot(u)−csc(u)−1+cos(u)sin(u)​=0
Simplify cot(u)−csc(u)−1+cos(u)sin(u)​:1+cos(u)cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)​
cot(u)−csc(u)−1+cos(u)sin(u)​
Convert element to fraction: cot(u)=1+cos(u)cot(u)(1+cos(u))​,csc(u)=1+cos(u)csc(u)(1+cos(u))​=1+cos(u)cot(u)(1+cos(u))​−1+cos(u)csc(u)(1+cos(u))​−1+cos(u)sin(u)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1+cos(u)cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)​
1+cos(u)cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)​=0
g(x)f(x)​=0⇒f(x)=0cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)=0
Express with sin, cos
−sin(u)+(1+cos(u))cot(u)−(1+cos(u))csc(u)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(u)+(1+cos(u))sin(u)cos(u)​−(1+cos(u))csc(u)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−sin(u)+(1+cos(u))sin(u)cos(u)​−(1+cos(u))sin(u)1​
Simplify −sin(u)+(1+cos(u))sin(u)cos(u)​−(1+cos(u))sin(u)1​:sin(u)−sin2(u)+cos2(u)−1​
−sin(u)+(1+cos(u))sin(u)cos(u)​−(1+cos(u))sin(u)1​
(1+cos(u))sin(u)cos(u)​=sin(u)cos(u)(1+cos(u))​
(1+cos(u))sin(u)cos(u)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(u)cos(u)(1+cos(u))​
(1+cos(u))sin(u)1​=sin(u)1+cos(u)​
(1+cos(u))sin(u)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(u)1⋅(1+cos(u))​
1⋅(1+cos(u))=1+cos(u)
1⋅(1+cos(u))
Multiply: 1⋅(1+cos(u))=(1+cos(u))=(1+cos(u))
Remove parentheses: (a)=a=1+cos(u)
=sin(u)1+cos(u)​
=−sin(u)+sin(u)cos(u)(cos(u)+1)​−sin(u)cos(u)+1​
Combine the fractions sin(u)cos(u)(cos(u)+1)​−sin(u)cos(u)+1​:sin(u)cos(u)(1+cos(u))−(1+cos(u))​
Apply rule ca​±cb​=ca±b​=sin(u)cos(u)(cos(u)+1)−(cos(u)+1)​
=−sin(u)+sin(u)cos(u)(cos(u)+1)−(cos(u)+1)​
Expand cos(u)(1+cos(u))−(1+cos(u)):cos2(u)−1
cos(u)(1+cos(u))−(1+cos(u))
Expand cos(u)(1+cos(u)):cos(u)+cos2(u)
cos(u)(1+cos(u))
Apply the distributive law: a(b+c)=ab+aca=cos(u),b=1,c=cos(u)=cos(u)⋅1+cos(u)cos(u)
=1⋅cos(u)+cos(u)cos(u)
Simplify 1⋅cos(u)+cos(u)cos(u):cos(u)+cos2(u)
1⋅cos(u)+cos(u)cos(u)
1⋅cos(u)=cos(u)
1⋅cos(u)
Multiply: 1⋅cos(u)=cos(u)=cos(u)
cos(u)cos(u)=cos2(u)
cos(u)cos(u)
Apply exponent rule: ab⋅ac=ab+ccos(u)cos(u)=cos1+1(u)=cos1+1(u)
Add the numbers: 1+1=2=cos2(u)
=cos(u)+cos2(u)
=cos(u)+cos2(u)
=cos(u)+cos2(u)−(1+cos(u))
−(1+cos(u)):−1−cos(u)
−(1+cos(u))
Distribute parentheses=−(1)−(cos(u))
Apply minus-plus rules+(−a)=−a=−1−cos(u)
=cos(u)+cos2(u)−1−cos(u)
Simplify cos(u)+cos2(u)−1−cos(u):cos2(u)−1
cos(u)+cos2(u)−1−cos(u)
Group like terms=cos(u)+cos2(u)−cos(u)−1
Add similar elements: cos(u)−cos(u)=0=cos2(u)−1
=cos2(u)−1
=−sin(u)+sin(u)cos2(u)−1​
Convert element to fraction: sin(u)=sin(u)sin(u)sin(u)​=−sin(u)sin(u)sin(u)​+sin(u)cos2(u)−1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(u)−sin(u)sin(u)+cos2(u)−1​
−sin(u)sin(u)+cos2(u)−1=−sin2(u)+cos2(u)−1
−sin(u)sin(u)+cos2(u)−1
sin(u)sin(u)=sin2(u)
sin(u)sin(u)
Apply exponent rule: ab⋅ac=ab+csin(u)sin(u)=sin1+1(u)=sin1+1(u)
Add the numbers: 1+1=2=sin2(u)
=−sin2(u)+cos2(u)−1
=sin(u)−sin2(u)+cos2(u)−1​
=sin(u)−sin2(u)+cos2(u)−1​
sin(u)−1+cos2(u)−sin2(u)​=0
g(x)f(x)​=0⇒f(x)=0−1+cos2(u)−sin2(u)=0
Rewrite using trig identities
−1+cos2(u)−sin2(u)
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=−1+cos(2u)
−1+cos(2u)=0
Move 1to the right side
−1+cos(2u)=0
Add 1 to both sides−1+cos(2u)+1=0+1
Simplifycos(2u)=1
cos(2u)=1
General solutions for cos(2u)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2u=0+2πn
2u=0+2πn
Solve 2u=0+2πn:u=πn
2u=0+2πn
0+2πn=2πn2u=2πn
Divide both sides by 2
2u=2πn
Divide both sides by 222u​=22πn​
Simplifyu=πn
u=πn
u=πn
Since the equation is undefined for:πnNoSolutionforu∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=(sqrt(5))/32cos(2θ)-1=0,0<= θ<= 2pi6cos(x)+6sin(x)tan(x)=12,0<= x<= 2pi6|tan(x)|=67sin(2x)=-2

Frequently Asked Questions (FAQ)

  • What is the general solution for cot(u)-csc(u)=(sin(u))/(1+cos(u)) ?

    The general solution for cot(u)-csc(u)=(sin(u))/(1+cos(u)) is No Solution for u\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024