Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(a)+1/(sec(a))= 5/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(a)+sec(a)1​=45​

Solution

a=3π​+2πn,a=35π​+2πn
+1
Degrees
a=60∘+360∘n,a=300∘+360∘n
Solution steps
sin2(a)+sec(a)1​=45​
Subtract 45​ from both sidessin2(a)+sec(a)1​−45​=0
Simplify sin2(a)+sec(a)1​−45​:4sec(a)4sin2(a)sec(a)+4−5sec(a)​
sin2(a)+sec(a)1​−45​
Convert element to fraction: sin2(a)=1sin2(a)​=1sin2(a)​+sec(a)1​−45​
Least Common Multiplier of 1,sec(a),4:4sec(a)
1,sec(a),4
Lowest Common Multiplier (LCM)
Least Common Multiplier of 1,4:4
1,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 1 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Compute an expression comprised of factors that appear in at least one of the factored expressions=4sec(a)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4sec(a)
For 1sin2(a)​:multiply the denominator and numerator by 4sec(a)1sin2(a)​=1⋅4sec(a)sin2(a)⋅4sec(a)​=4sec(a)sin2(a)⋅4sec(a)​
For sec(a)1​:multiply the denominator and numerator by 4sec(a)1​=sec(a)⋅41⋅4​=4sec(a)4​
For 45​:multiply the denominator and numerator by sec(a)45​=4sec(a)5sec(a)​
=4sec(a)sin2(a)⋅4sec(a)​+4sec(a)4​−4sec(a)5sec(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4sec(a)sin2(a)⋅4sec(a)+4−5sec(a)​
4sec(a)4sin2(a)sec(a)+4−5sec(a)​=0
g(x)f(x)​=0⇒f(x)=04sin2(a)sec(a)+4−5sec(a)=0
Express with sin, cos4sin2(a)cos(a)1​+4−5⋅cos(a)1​=0
Simplify 4sin2(a)cos(a)1​+4−5⋅cos(a)1​:cos(a)4sin2(a)−5+4cos(a)​
4sin2(a)cos(a)1​+4−5⋅cos(a)1​
4sin2(a)cos(a)1​=cos(a)4sin2(a)​
4sin2(a)cos(a)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(a)1⋅4sin2(a)​
Multiply the numbers: 1⋅4=4=cos(a)4sin2(a)​
5⋅cos(a)1​=cos(a)5​
5⋅cos(a)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(a)1⋅5​
Multiply the numbers: 1⋅5=5=cos(a)5​
=cos(a)4sin2(a)​+4−cos(a)5​
Combine the fractions cos(a)4sin2(a)​−cos(a)5​:cos(a)4sin2(a)−5​
Apply rule ca​±cb​=ca±b​=cos(a)4sin2(a)−5​
=cos(a)4sin2(a)−5​+4
Convert element to fraction: 4=cos(a)4cos(a)​=cos(a)4sin2(a)−5​+cos(a)4cos(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(a)4sin2(a)−5+4cos(a)​
cos(a)4sin2(a)−5+4cos(a)​=0
g(x)f(x)​=0⇒f(x)=04sin2(a)−5+4cos(a)=0
Subtract 4cos(a) from both sides4sin2(a)−5=−4cos(a)
Square both sides(4sin2(a)−5)2=(−4cos(a))2
Subtract (−4cos(a))2 from both sides(4sin2(a)−5)2−16cos2(a)=0
Factor (4sin2(a)−5)2−16cos2(a):(4sin2(a)−5+4cos(a))(4sin2(a)−5−4cos(a))
(4sin2(a)−5)2−16cos2(a)
Rewrite (4sin2(a)−5)2−16cos2(a) as (4sin2(a)−5)2−(4cos(a))2
(4sin2(a)−5)2−16cos2(a)
Rewrite 16 as 42=(4sin2(a)−5)2−42cos2(a)
Apply exponent rule: ambm=(ab)m42cos2(a)=(4cos(a))2=(4sin2(a)−5)2−(4cos(a))2
=(4sin2(a)−5)2−(4cos(a))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(4sin2(a)−5)2−(4cos(a))2=((4sin2(a)−5)+4cos(a))((4sin2(a)−5)−4cos(a))=((4sin2(a)−5)+4cos(a))((4sin2(a)−5)−4cos(a))
Refine=(4sin2(a)+4cos(a)−5)(4sin2(a)−4cos(a)−5)
(4sin2(a)−5+4cos(a))(4sin2(a)−5−4cos(a))=0
Solving each part separately4sin2(a)−5+4cos(a)=0or4sin2(a)−5−4cos(a)=0
4sin2(a)−5+4cos(a)=0:a=3π​+2πn,a=35π​+2πn
4sin2(a)−5+4cos(a)=0
Rewrite using trig identities
−5+4cos(a)+4sin2(a)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−5+4cos(a)+4(1−cos2(a))
Simplify −5+4cos(a)+4(1−cos2(a)):4cos(a)−4cos2(a)−1
−5+4cos(a)+4(1−cos2(a))
Expand 4(1−cos2(a)):4−4cos2(a)
4(1−cos2(a))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=cos2(a)=4⋅1−4cos2(a)
Multiply the numbers: 4⋅1=4=4−4cos2(a)
=−5+4cos(a)+4−4cos2(a)
Simplify −5+4cos(a)+4−4cos2(a):4cos(a)−4cos2(a)−1
−5+4cos(a)+4−4cos2(a)
Group like terms=4cos(a)−4cos2(a)−5+4
Add/Subtract the numbers: −5+4=−1=4cos(a)−4cos2(a)−1
=4cos(a)−4cos2(a)−1
=4cos(a)−4cos2(a)−1
−1+4cos(a)−4cos2(a)=0
Solve by substitution
−1+4cos(a)−4cos2(a)=0
Let: cos(a)=u−1+4u−4u2=0
−1+4u−4u2=0:u=21​
−1+4u−4u2=0
Write in the standard form ax2+bx+c=0−4u2+4u−1=0
Solve with the quadratic formula
−4u2+4u−1=0
Quadratic Equation Formula:
For a=−4,b=4,c=−1u1,2​=2(−4)−4±42−4(−4)(−1)​​
u1,2​=2(−4)−4±42−4(−4)(−1)​​
42−4(−4)(−1)=0
42−4(−4)(−1)
Apply rule −(−a)=a=42−4⋅4⋅1
Multiply the numbers: 4⋅4⋅1=16=42−16
42=16=16−16
Subtract the numbers: 16−16=0=0
u1,2​=2(−4)−4±0​​
u=2(−4)−4​
2(−4)−4​=21​
2(−4)−4​
Remove parentheses: (−a)=−a=−2⋅4−4​
Multiply the numbers: 2⋅4=8=−8−4​
Apply the fraction rule: −b−a​=ba​=84​
Cancel the common factor: 4=21​
u=21​
The solution to the quadratic equation is:u=21​
Substitute back u=cos(a)cos(a)=21​
cos(a)=21​
cos(a)=21​:a=3π​+2πn,a=35π​+2πn
cos(a)=21​
General solutions for cos(a)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=3π​+2πn,a=35π​+2πn
a=3π​+2πn,a=35π​+2πn
Combine all the solutionsa=3π​+2πn,a=35π​+2πn
4sin2(a)−5−4cos(a)=0:a=32π​+2πn,a=34π​+2πn
4sin2(a)−5−4cos(a)=0
Rewrite using trig identities
−5−4cos(a)+4sin2(a)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−5−4cos(a)+4(1−cos2(a))
Simplify −5−4cos(a)+4(1−cos2(a)):−4cos2(a)−4cos(a)−1
−5−4cos(a)+4(1−cos2(a))
Expand 4(1−cos2(a)):4−4cos2(a)
4(1−cos2(a))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=cos2(a)=4⋅1−4cos2(a)
Multiply the numbers: 4⋅1=4=4−4cos2(a)
=−5−4cos(a)+4−4cos2(a)
Simplify −5−4cos(a)+4−4cos2(a):−4cos2(a)−4cos(a)−1
−5−4cos(a)+4−4cos2(a)
Group like terms=−4cos(a)−4cos2(a)−5+4
Add/Subtract the numbers: −5+4=−1=−4cos2(a)−4cos(a)−1
=−4cos2(a)−4cos(a)−1
=−4cos2(a)−4cos(a)−1
−1−4cos(a)−4cos2(a)=0
Solve by substitution
−1−4cos(a)−4cos2(a)=0
Let: cos(a)=u−1−4u−4u2=0
−1−4u−4u2=0:u=−21​
−1−4u−4u2=0
Write in the standard form ax2+bx+c=0−4u2−4u−1=0
Solve with the quadratic formula
−4u2−4u−1=0
Quadratic Equation Formula:
For a=−4,b=−4,c=−1u1,2​=2(−4)−(−4)±(−4)2−4(−4)(−1)​​
u1,2​=2(−4)−(−4)±(−4)2−4(−4)(−1)​​
(−4)2−4(−4)(−1)=0
(−4)2−4(−4)(−1)
Apply rule −(−a)=a=(−4)2−4⋅4⋅1
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42−4⋅4⋅1
Multiply the numbers: 4⋅4⋅1=16=42−16
42=16=16−16
Subtract the numbers: 16−16=0=0
u1,2​=2(−4)−(−4)±0​​
u=2(−4)−(−4)​
2(−4)−(−4)​=−21​
2(−4)−(−4)​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅44​
Multiply the numbers: 2⋅4=8=−84​
Apply the fraction rule: −ba​=−ba​=−84​
Cancel the common factor: 4=−21​
u=−21​
The solution to the quadratic equation is:u=−21​
Substitute back u=cos(a)cos(a)=−21​
cos(a)=−21​
cos(a)=−21​:a=32π​+2πn,a=34π​+2πn
cos(a)=−21​
General solutions for cos(a)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=32π​+2πn,a=34π​+2πn
a=32π​+2πn,a=34π​+2πn
Combine all the solutionsa=32π​+2πn,a=34π​+2πn
Combine all the solutionsa=3π​+2πn,a=35π​+2πn,a=32π​+2πn,a=34π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sin2(a)+sec(a)1​=45​
Remove the ones that don't agree with the equation.
Check the solution 3π​+2πn:True
3π​+2πn
Plug in n=13π​+2π1
For sin2(a)+sec(a)1​=45​plug ina=3π​+2π1sin2(3π​+2π1)+sec(3π​+2π1)1​=45​
Refine1.25=1.25
⇒True
Check the solution 35π​+2πn:True
35π​+2πn
Plug in n=135π​+2π1
For sin2(a)+sec(a)1​=45​plug ina=35π​+2π1sin2(35π​+2π1)+sec(35π​+2π1)1​=45​
Refine1.25=1.25
⇒True
Check the solution 32π​+2πn:False
32π​+2πn
Plug in n=132π​+2π1
For sin2(a)+sec(a)1​=45​plug ina=32π​+2π1sin2(32π​+2π1)+sec(32π​+2π1)1​=45​
Refine0.25=1.25
⇒False
Check the solution 34π​+2πn:False
34π​+2πn
Plug in n=134π​+2π1
For sin2(a)+sec(a)1​=45​plug ina=34π​+2π1sin2(34π​+2π1)+sec(34π​+2π1)1​=45​
Refine0.25=1.25
⇒False
a=3π​+2πn,a=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(csc(x))/(cot(x))=sqrt(2)sin(4x)+6cos(2x)=0sec(a)= 41/12 ,2pi<a<(5pi)/2 ,sin(a/2)sin(2x)=0.3sin(2x)=0.6

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^2(a)+1/(sec(a))= 5/4 ?

    The general solution for sin^2(a)+1/(sec(a))= 5/4 is a= pi/3+2pin,a=(5pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024