Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x+20)=cot(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x+20∘)=cot(x)

Solution

x=180∘n+45∘−10∘,x=180∘n−10∘+135∘
+1
Radians
x=4π​−18π​+πn,x=−18π​+43π​+πn
Solution steps
tan(x+20∘)=cot(x)
Subtract cot(x) from both sidestan(x+20∘)−cot(x)=0
Express with sin, cos
−cot(x)+tan(20∘+x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(x)cos(x)​+tan(20∘+x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(x)cos(x)​+cos(20∘+x)sin(20∘+x)​
Simplify −sin(x)cos(x)​+cos(20∘+x)sin(20∘+x)​:sin(x)cos(99x+180∘​)−cos(x)cos(99x+180∘​)+sin(9180∘+9x​)sin(x)​
−sin(x)cos(x)​+cos(20∘+x)sin(20∘+x)​
cos(20∘+x)sin(20∘+x)​=cos(9180∘+9x​)sin(9180∘+9x​)​
cos(20∘+x)sin(20∘+x)​
Join 20∘+x:9180∘+9x​
20∘+x
Convert element to fraction: x=9x9​=20∘+9x⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9180∘+x⋅9​
=cos(9180∘+x⋅9​)sin(20∘+x)​
Join 20∘+x:9180∘+9x​
20∘+x
Convert element to fraction: x=9x9​=20∘+9x⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9180∘+x⋅9​
=cos(9180∘+x⋅9​)sin(9180∘+x⋅9​)​
=−sin(x)cos(x)​+cos(99x+180∘​)sin(99x+180∘​)​
Least Common Multiplier of sin(x),cos(9180∘+x9​):sin(x)cos(99x+180∘​)
sin(x),cos(9180∘+x⋅9​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(x) or cos(9180∘+x9​)=sin(x)cos(99x+180∘​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)cos(99x+180∘​)
For sin(x)cos(x)​:multiply the denominator and numerator by cos(99x+180∘​)sin(x)cos(x)​=sin(x)cos(99x+180∘​)cos(x)cos(99x+180∘​)​
For cos(9180∘+x⋅9​)sin(9180∘+x⋅9​)​:multiply the denominator and numerator by sin(x)cos(9180∘+x⋅9​)sin(9180∘+x⋅9​)​=cos(9180∘+x⋅9​)sin(x)sin(9180∘+x⋅9​)sin(x)​
=−sin(x)cos(99x+180∘​)cos(x)cos(99x+180∘​)​+cos(9180∘+x⋅9​)sin(x)sin(9180∘+x⋅9​)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(99x+180∘​)−cos(x)cos(99x+180∘​)+sin(9180∘+x⋅9​)sin(x)​
=sin(x)cos(99x+180∘​)−cos(x)cos(99x+180∘​)+sin(9180∘+9x​)sin(x)​
cos(9180∘+9x​)sin(x)−cos(9180∘+9x​)cos(x)+sin(9180∘+9x​)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−cos(9180∘+9x​)cos(x)+sin(9180∘+9x​)sin(x)=0
Rewrite using trig identities
−cos(9180∘+9x​)cos(x)+sin(9180∘+9x​)sin(x)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)−cos(s)cos(t)+sin(s)sin(t)=−cos(s+t)=−cos(9180∘+9x​+x)
−cos(9180∘+9x​+x)=0
Divide both sides by −1
−cos(9180∘+9x​+x)=0
Divide both sides by −1−1−cos(9180∘+9x​+x)​=−10​
Simplifycos(9180∘+9x​+x)=0
cos(9180∘+9x​+x)=0
General solutions for cos(9180∘+9x​+x)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
9180∘+9x​+x=90∘+360∘n,9180∘+9x​+x=270∘+360∘n
9180∘+9x​+x=90∘+360∘n,9180∘+9x​+x=270∘+360∘n
Solve 9180∘+9x​+x=90∘+360∘n:x=180∘n+45∘−10∘
9180∘+9x​+x=90∘+360∘n
Multiply both sides by 9
9180∘+9x​+x=90∘+360∘n
Multiply both sides by 99180∘+9x​⋅9+x⋅9=90∘⋅9+360∘n⋅9
Simplify
9180∘+9x​⋅9+x⋅9=90∘⋅9+360∘n⋅9
Simplify 9180∘+9x​⋅9:180∘+9x
9180∘+9x​⋅9
Multiply fractions: a⋅cb​=ca⋅b​=9(180∘+9x)⋅9​
Cancel the common factor: 9=180∘+9x
Simplify x⋅9:9x
x⋅9
Apply the commutative law: x⋅9=9x9x
Simplify 90∘⋅9:810∘
90∘⋅9
Multiply fractions: a⋅cb​=ca⋅b​=810∘
Simplify 360∘n⋅9:3240∘n
360∘n⋅9
Multiply the numbers: 2⋅9=18=3240∘n
180∘+9x+9x=810∘+3240∘n
180∘+18x=810∘+3240∘n
180∘+18x=810∘+3240∘n
180∘+18x=810∘+3240∘n
Move 180∘to the right side
180∘+18x=810∘+3240∘n
Subtract 180∘ from both sides180∘+18x−180∘=810∘+3240∘n−180∘
Simplify18x=810∘+3240∘n−180∘
18x=810∘+3240∘n−180∘
Divide both sides by 18
18x=810∘+3240∘n−180∘
Divide both sides by 181818x​=18810∘​+183240∘n​−10∘
Simplify
1818x​=18810∘​+183240∘n​−10∘
Simplify 1818x​:x
1818x​
Divide the numbers: 1818​=1=x
Simplify 18810∘​+183240∘n​−10∘:180∘n+45∘−10∘
18810∘​+183240∘n​−10∘
Group like terms=−10∘+183240∘n​+18810∘​
183240∘n​=180∘n
183240∘n​
Divide the numbers: 1818​=1=180∘n
18810∘​=45∘
18810∘​
Apply the fraction rule: acb​​=c⋅ab​=2⋅181620∘​
Multiply the numbers: 2⋅18=36=45∘
Cancel the common factor: 9=45∘
=−10∘+180∘n+45∘
Group like terms=180∘n+45∘−10∘
x=180∘n+45∘−10∘
x=180∘n+45∘−10∘
x=180∘n+45∘−10∘
Solve 9180∘+9x​+x=270∘+360∘n:x=180∘n−10∘+135∘
9180∘+9x​+x=270∘+360∘n
Multiply both sides by 9
9180∘+9x​+x=270∘+360∘n
Multiply both sides by 99180∘+9x​⋅9+x⋅9=270∘⋅9+360∘n⋅9
Simplify
9180∘+9x​⋅9+x⋅9=270∘⋅9+360∘n⋅9
Simplify 9180∘+9x​⋅9:180∘+9x
9180∘+9x​⋅9
Multiply fractions: a⋅cb​=ca⋅b​=9(180∘+9x)⋅9​
Cancel the common factor: 9=180∘+9x
Simplify x⋅9:9x
x⋅9
Apply the commutative law: x⋅9=9x9x
Simplify 270∘⋅9:2430∘
270∘⋅9
Multiply fractions: a⋅cb​=ca⋅b​=2430∘
Multiply the numbers: 3⋅9=27=2430∘
Simplify 360∘n⋅9:3240∘n
360∘n⋅9
Multiply the numbers: 2⋅9=18=3240∘n
180∘+9x+9x=2430∘+3240∘n
180∘+18x=2430∘+3240∘n
180∘+18x=2430∘+3240∘n
180∘+18x=2430∘+3240∘n
Move 180∘to the right side
180∘+18x=2430∘+3240∘n
Subtract 180∘ from both sides180∘+18x−180∘=2430∘+3240∘n−180∘
Simplify18x=2430∘+3240∘n−180∘
18x=2430∘+3240∘n−180∘
Divide both sides by 18
18x=2430∘+3240∘n−180∘
Divide both sides by 181818x​=182430∘​+183240∘n​−10∘
Simplify
1818x​=182430∘​+183240∘n​−10∘
Simplify 1818x​:x
1818x​
Divide the numbers: 1818​=1=x
Simplify 182430∘​+183240∘n​−10∘:180∘n−10∘+135∘
182430∘​+183240∘n​−10∘
Group like terms=−10∘+183240∘n​+182430∘​
183240∘n​=180∘n
183240∘n​
Divide the numbers: 1818​=1=180∘n
182430∘​=135∘
182430∘​
Apply the fraction rule: acb​​=c⋅ab​=2⋅184860∘​
Multiply the numbers: 2⋅18=36=135∘
Cancel the common factor: 9=135∘
=−10∘+180∘n+135∘
Group like terms=180∘n−10∘+135∘
x=180∘n−10∘+135∘
x=180∘n−10∘+135∘
x=180∘n−10∘+135∘
x=180∘n+45∘−10∘,x=180∘n−10∘+135∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3csc^2(x)+1=56cos^2(x)-12cos(x)+6=06sin^2(θ)-10sin(θ)-8=-3sin(θ)-3sin(4θ)-sin(6θ)=0sin(x)= 3/10

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x+20)=cot(x) ?

    The general solution for tan(x+20)=cot(x) is x=180n+45-10,x=180n-10+135
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024