Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor y,sin(x+y)+sin(y+z)+sin(x+z)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for y,sin(x+y)+sin(y+z)+sin(x+z)=0

Solution

y=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​,y=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
Solution steps
sin(x+y)+sin(y+z)+sin(x+z)=0
Rewrite using trig identities
sin(x+y)+sin(y+z)+sin(x+z)
Use the Sum to Product identity: sin(s)+sin(t)=2sin(2s+t​)cos(2s−t​)=sin(x+z)+2sin(2x+y+y+z​)cos(2x+y−(y+z)​)
2sin(2x+y+y+z​)cos(2x+y−(y+z)​)=2cos(2x−z​)sin(2x+2y+z​)
2sin(2x+y+y+z​)cos(2x+y−(y+z)​)
Add similar elements: y+y=2y=2sin(22y+x+z​)cos(2y+x−(y+z)​)
Expand x+y−(y+z):x−z
x+y−(y+z)
−(y+z):−y−z
−(y+z)
Distribute parentheses=−y−z
Apply minus-plus rules+(−a)=−a=−y−z
=x+y−y−z
Add similar elements: y−y=0=x−z
=2cos(2x−z​)sin(22y+x+z​)
=sin(x+z)+2cos(2x−z​)sin(2x+2y+z​)
sin(x+z)+2cos(2x−z​)sin(2x+2y+z​)=0
Move sin(x+z)to the right side
sin(x+z)+2cos(2x−z​)sin(2x+2y+z​)=0
Subtract sin(x+z) from both sidessin(x+z)+2cos(2x−z​)sin(2x+2y+z​)−sin(x+z)=0−sin(x+z)
Simplify2cos(2x−z​)sin(2x+2y+z​)=−sin(x+z)
2cos(2x−z​)sin(2x+2y+z​)=−sin(x+z)
Divide both sides by 2cos(2x−z​);x=π+4πn+z,x=3π+4πn+z
2cos(2x−z​)sin(2x+2y+z​)=−sin(x+z)
Divide both sides by 2cos(2x−z​);x=π+4πn+z,x=3π+4πn+z2cos(2x−z​)2cos(2x−z​)sin(2x+2y+z​)​=2cos(2x−z​)−sin(x+z)​;x=π+4πn+z,x=3π+4πn+z
Simplifysin(2x+2y+z​)=−2cos(2x−z​)sin(x+z)​;x=π+4πn+z,x=3π+4πn+z
sin(2x+2y+z​)=−2cos(2x−z​)sin(x+z)​;x=π+4πn+z,x=3π+4πn+z
Apply trig inverse properties
sin(2x+2y+z​)=−2cos(2x−z​)sin(x+z)​
General solutions for sin(2x+2y+z​)=−2cos(2x−z​)sin(x+z)​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πn2x+2y+z​=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn,2x+2y+z​=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn
2x+2y+z​=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn,2x+2y+z​=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn
Solve 2x+2y+z​=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn:y=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
2x+2y+z​=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn
Multiply both sides by 2
2x+2y+z​=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn
Multiply both sides by 222(x+2y+z)​=2arcsin(−2cos(2x−z​)sin(x+z)​)+2⋅2πn
Simplify
22(x+2y+z)​=2arcsin(−2cos(2x−z​)sin(x+z)​)+2⋅2πn
Simplify 22(x+2y+z)​:x+2y+z
22(x+2y+z)​
Divide the numbers: 22​=1=x+2y+z
Simplify 2arcsin(−2cos(2x−z​)sin(x+z)​)+2⋅2πn:2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn
2arcsin(−2cos(2x−z​)sin(x+z)​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn
x+2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn
x+2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn
x+2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn
Move xto the right side
x+2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn
Subtract x from both sidesx+2y+z−x=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x
Simplify2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x
2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x
Move zto the right side
2y+z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x
Subtract z from both sides2y+z−z=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x−z
Simplify2y=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x−z
2y=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x−z
Divide both sides by 2
2y=2arcsin(−2cos(2x−z​)sin(x+z)​)+4πn−x−z
Divide both sides by 222y​=22arcsin(−2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​
Simplify
22y​=22arcsin(−2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​
Simplify 22y​:y
22y​
Divide the numbers: 22​=1=y
Simplify 22arcsin(−2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​:arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
22arcsin(−2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​
Divide the numbers: 22​=1=arcsin(−2cos(2x−z​)sin(x+z)​)+24πn​−2x​−2z​
Divide the numbers: 24​=2=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
Solve 2x+2y+z​=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn:y=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
2x+2y+z​=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn
Multiply both sides by 2
2x+2y+z​=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn
Multiply both sides by 222(x+2y+z)​=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+2⋅2πn
Simplify
22(x+2y+z)​=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+2⋅2πn
Simplify 22(x+2y+z)​:x+2y+z
22(x+2y+z)​
Divide the numbers: 22​=1=x+2y+z
Simplify 2π+2arcsin(2cos(2x−z​)sin(x+z)​)+2⋅2πn:2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn
2π+2arcsin(2cos(2x−z​)sin(x+z)​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn
x+2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn
x+2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn
x+2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn
Move xto the right side
x+2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn
Subtract x from both sidesx+2y+z−x=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x
Simplify2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x
2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x
Move zto the right side
2y+z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x
Subtract z from both sides2y+z−z=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x−z
Simplify2y=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x−z
2y=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x−z
Divide both sides by 2
2y=2π+2arcsin(2cos(2x−z​)sin(x+z)​)+4πn−x−z
Divide both sides by 222y​=22π​+22arcsin(2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​
Simplify
22y​=22π​+22arcsin(2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​
Simplify 22y​:y
22y​
Divide the numbers: 22​=1=y
Simplify 22π​+22arcsin(2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​:π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
22π​+22arcsin(2cos(2x−z​)sin(x+z)​)​+24πn​−2x​−2z​
Divide the numbers: 22​=1=π+arcsin(2cos(2x−z​)sin(x+z)​)+24πn​−2x​−2z​
Divide the numbers: 24​=2=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​
y=arcsin(−2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​,y=π+arcsin(2cos(2x−z​)sin(x+z)​)+2πn−2x​−2z​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(2)sin(x)-tan(x)=02sin^2(x)-13sin(x)+6=02tan(θ)+3=0tan(x)= 4/6cos(2x)=-2cos^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor y,sin(x+y)+sin(y+z)+sin(x+z)=0 ?

    The general solution for solvefor y,sin(x+y)+sin(y+z)+sin(x+z)=0 is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024